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Microcystin removal under groundwater—surface water interactions
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[ Abstract] Microcystins (MCs) are highly toxic cyanobacterial metabolites that pose risks to both aquatic and
terrestrial ecosystems. Riparian buffers are widely recognized for attenuating land-derived pollutants, yet their
capacity to reduce river-borne microcystins remains underexplored. Integrating field monitoring, laboratory soil-
column experiments, and microbial community analyses, we evaluated MC removal in riparian zones under dynamic
river—groundwater exchange. Field data from a tidal river near the Yangtze River Estuary reveal bidirectional river—
groundwater exchange and intrusion of riverine MC into the riparian corridor. Column experiments showed that,
relative to conservative chloride, MC mass recovery decreased by ~90%, with fitted first-order decay rate constants
of 1.02-1.15 d™!. Amplicon sequencing indicated enrichment of putative MC-degrading taxa in riparian soils (e.g.,
Sphingomonas, Novosphingomonas). These results identify riparian zones as an overlooked biogeochemical filter
for river-borne MC. Understanding MC fate within riparian systems can inform nature-based solutions for watershed-
scale cyanotoxin management.
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