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基于多策略改进 MRFO 算法的家庭能源调度优化 

邹雨蒙，吴冬梅* 

南京邮电大学自动化学院  江苏南京 

【摘要】针对蝠鲼觅食优化（Manta Ray Foraging Optimization, MRFO）算法在求解高维复杂离散家庭能源调

度问题时，存在种群多样性缺失、易陷入局部最优及多目标优化不平衡等问题，本研究提出一种离散长时记忆蝠

鲼觅食优化（Discrete Long-term Memory Manta Ray Foraging Optimization, DLMMRFO）算法，该算法在 MRFO 框

架中系统融合了五种改进策略，离散位置更新策略将连续搜索空间映射为可行调度方案，解决原始算法在处理离

散变量时的失配问题；动态权重机制在迭代过程中自适应调整成本与峰均比（Peak-to-Average Ratio, PAR）的优

化权重，平衡多目标优化进程；长时记忆机制通过保留历史优质解增强全局探索能力，防止早熟收敛；变异操作

引入随机扰动以维持种群多样性；PAR 专项优化策略则在迭代后期针对性地降低负荷峰均比。仿真实验通过增加

家电数量来增加复杂度，设置简单与复杂两类场景，结果表明，相较于 MRFO 算法和未调度场景，DLMMRFO
算法在简单场景中使成本降低 7.89%和 45.30%，PAR 降低 9.55%和 33.91%；在复杂场景中，成本降幅达 5.89%和

53.29%，PAR 降幅为 16.82%和 43.67%。为家庭能源管理提供了有效解决方案，有助于实现能源资源的高效配置

与利用。 
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Home energy scheduling optimization based on a multi-strategy improved manta ray foraging optimization 

algorithm 
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【Abstract】To address the issues of population diversity loss, susceptibility to local optima, and unbalanced multi-
objective optimization when the Manta Ray Foraging Optimization (MRFO) algorithm is applied to high-dimensional 
complex discrete home energy scheduling problems, this study proposes a Discrete Long-term Memory Manta Ray 
Foraging Optimization (DLMMRFO) algorithm. The DLMMRFO systematically integrates five improvement strategies 
within the MRFO framework: a discrete position update strategy maps the continuous search space to feasible scheduling 
solutions, resolving the mismatch problem of the original algorithm in handling discrete variables; a dynamic weight 
mechanism adaptively adjusts the optimization weights of cost and PAR during iteration to balance the multi-objective 
optimization process; a long-term memory mechanism enhances global exploration capability by preserving high-quality 
historical solutions, thereby preventing premature convergence; mutation operations introduce random perturbations to 
maintain population diversity; and a dedicated PAR optimization strategy specifically targets the reduction of the Peak-to-
Average Ratio in the later stages of iteration. Simulation experiments, designed with both simple and complex scenarios 
by increasing the number of household appliances, demonstrate that compared to the original MRFO algorithm and an 
unscheduled scenario, the DLMMRFO algorithm reduces the cost by 7.89% and 45.30%, and the PAR by 9.55% and 
33.91%, respectively, in the simple scenario. In the complex scenario, it achieves cost reductions of 5.89% and 53.29%, 
and PAR reductions of 16.82% and 43.67%, respectively. The proposed algorithm provides an effective solution for home 
energy management, contributing to the efficient allocation and utilization of energy resources. 
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引言 
随着全球人口增长、气候变化以及碳排放量的持

续增加，电力需求不断攀升，电力系统的生产、分配及

可靠性面临着严峻的挑战[1]。在此背景下，住宅能源消

耗日益增长[2]。为应对环境与能源危机带来的挑战，智

能电网通过集成先进的通信、传感与控制技术，实现了

电力流与信息流的双向互动，为需求侧管理 （Demand 
Side Management, DSM）提供了坚实的技术基础[3]。特

别是与居民生活息息相关的家庭能源管理系统 （Home 
Energy Management System, HEMS），已成为平衡电网

负荷、提升能源利用效率的关键环节。 
通过调度各类家用电器的工作时间，HEMS 在保

障用户舒适度的前提下，降低用电成本（Electricity 
Cost）与峰均比（Peak-to-Average Ratio, PAR），从而

帮助用户侧降低用电成本和减轻电网侧的压力[4]。且

随着屋顶光伏、小型风电等分布式可再生能源在居民

区的普及，用户不再是单纯的消费者，而是转变为可

生产、消费甚至出售电力的产消者[5]。这使得家庭级

的电力交易成为可能，进一步增加了 HEMS 的复杂性

与优化潜力。 
目前，国内外学者围绕 HEMS 的调度问题已开展

了广泛的研究。诸多智能优化算法被应用于求解该类

问题。例如，文献[6]采用整数线性规划 （Integer Linear 
Programming, ILP）来平衡住宅区的电力供需；文献[7]
利用混合整数线性规划 （Mixed-ILP）来最小化总用电

成本；文献[8]则将实时电价 （Real-Time Pricing, RTP）
的定价模型与倾斜区块率（Inclining Block Rate, IBR）
相结合，在分时电价 （Time-of-Use, TOU）等机制下运

用了遗传算法（Genetic Algorithm, GA）来优化用电成

本与 PAR，成功降低了电费和提高了系统的稳定性。

文献[9]使用粒子群算法（Particle Swarm Optimization, 
PSO）实现了具有中断载荷的家庭能源调度系统。 

近年来，一些新颖的元启发式算法凭借卓越的寻

优能力引人注目，如文献[10]提出了一种混合细菌觅食

-遗传算法，用来处理多重约束的问题，显著提高了算

法在问题中的搜索效率。文献[11]提出了蝠鲼觅食优化

（Manta Ray Foraging Optimization, MRFO）算法，它

拥有全局探索能力强、收敛速度快等特点，在诸多领域

得到了成功应用。 
但是在算法层面现有研究仍存在一些局限性。如

传统的元启发式算法算法更适用于连续优化问题，在

解决高维、多约束的离散调度问题时，存在易陷入局部

最优、种群多样性过早丧失等不足等缺陷[12]，且难以

在面对多目标优化的问题时平衡多个目标之间的优化

程度。因此其难以满足家庭能源管理场景下的复杂优

化需求。 
针对上述问题，本文在不考虑可再生能源

（Renewable Energy Sources, RES）和储能设备 （Energy 
Storage System, ESS）的家庭能源调度场景下，以降低

用户侧用电总成本和电网侧 PAR 为目标，提出了

HEMS 模型，该模型通过将电价高峰期时的负载在满

足约束条件的情况下转移至电价低谷期，来实现削峰

填谷，通过 DLMMRFO 获取其最优调度方案。以单户

家庭的能源调度为例，研究对比了在简单和复杂场景

下的调度结果。 
1 HEMS 建模 
本文构建的 HEMS 包含用电设备、电网供电系统、

以及能源管理控制器（Energy Management Controller， 
EMC）三个核心组成部分，系统结构如图 1 所示[13]。

用电设备包括多种类型的家用电器，所有设备均通过

家庭内部网络与 EMC 连接。各类设备的运行状态由二

进制变量表示： 

 𝛼𝛼𝑖𝑖（𝑡𝑡） = �
1，设备 i 在时刻 t 处于运行状态

0，设备 i 在时刻 t 处于关闭状态
 （1） 

电网供电系统采用 RTP 机制向家庭供电。RTP 信

号为一天 24 小时中每个小时设定不同的电价，旨在引

导用户在电价高的峰值时段减少用电，在电价低的谷

值时段增加用电，从而实现削峰填谷[14]。其数学表达

式如式（2）所示。 

 𝜌𝜌(𝑡𝑡) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)，𝑡𝑡 = 1，2，. . .，24  （2） 

EMC 是系统的决策核心，它接收电网发布的 RTP
信号，通过优化算法来寻找最优调度方案，最后将具体

的启停指令传输给各类家用电器。本文用加权方式将

多目标优化问题转化为单目标优化问题，其优化目标

函数如式（3）所示。 

 𝑓𝑓 = 𝜔𝜔1 ⋅ 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜔𝜔2 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃   （3） 

式中，𝜔𝜔1和𝜔𝜔2为加权系数，𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡表示总成本的大小，

而𝑃𝑃𝑃𝑃𝑃𝑃表示峰均比的大小。 
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图 1  HEMS 结构图 

 
1.1 家庭用电设备类型 
家庭中的用电设备在运行特性上存在较大的差异，

本文将其分为基础设备、不可中断设备、可转移设备和

可中断设备四类进行建模。 
基础设备是指那些通常需要持续地运行，既不可

被中断也不可被转移的设备。例如照明设备、冰箱等。

其运行时间由用户习惯硬性规定，EMC 不对其进行调

度优化。其数学模型如下： 

 𝑆𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖     （4） 

𝑃𝑃𝑖𝑖（𝑡𝑡）= 𝜆𝜆𝑖𝑖 ⋅ 𝛼𝛼𝑖𝑖（𝑡𝑡），𝑖𝑖 ∈ [1，𝑛𝑛1]，𝛼𝛼𝑖𝑖（𝑡𝑡）= 1∀𝑡𝑡 ∈ [𝛼𝛼𝑖𝑖，𝛽𝛽𝑖𝑖]（5） 

式中，𝑆𝑆𝑖𝑖为第𝑖𝑖个该类设备的启动时间，𝛼𝛼𝑖𝑖为该设备的

最早启动时间，𝑃𝑃𝑖𝑖（𝑡𝑡）为第𝑖𝑖个该类设备的功率，𝑛𝑛1
为该类设备总数，𝛽𝛽𝑖𝑖为该设备的最晚结束时间，𝜆𝜆𝑖𝑖为
其额定功率的大小，𝛼𝛼𝑖𝑖（𝑡𝑡）为 t 时刻该设备的开关状

态。 
不可中断设备是指那些一旦开始运行便不可被中

断，需要持续运行直至其工作结束的设备，但可以在一

个时间窗内灵活调整其启动时间。例如洗衣机和洗碗

机。其数学模型如下： 

 𝛼𝛼𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝛽𝛽𝑖𝑖 − 𝜂𝜂𝑖𝑖 + 1   （6） 

∑ 𝛼𝛼𝑖𝑖（𝑡𝑡） = 𝜂𝜂𝑖𝑖𝑆𝑆𝑖𝑖+𝜂𝜂𝑖𝑖−1
𝑡𝑡=𝑆𝑆𝑖𝑖 ，𝛼𝛼𝑖𝑖（𝑡𝑡） = 1∀𝑡𝑡 ∈ [𝑆𝑆𝑖𝑖，𝑆𝑆𝑖𝑖 + 𝜂𝜂𝑖𝑖 − 1] （7） 

 𝑃𝑃𝑖𝑖（𝑡𝑡） = 𝜆𝜆𝑖𝑖 ⋅ 𝛼𝛼𝑖𝑖（𝑡𝑡），𝑖𝑖 ∈ [1，𝑛𝑛2]  （8） 

式中，𝛼𝛼𝑖𝑖为第 i 个该类设备的最早启动时间，𝛽𝛽𝑖𝑖为最晚

完成时间，𝜂𝜂𝑖𝑖为所需运行时长，𝛼𝛼𝑖𝑖（𝑡𝑡）为 t 时刻该设

备的开关状态，𝑛𝑛2为该类设备总数。 
可转移设备是指在运行过程中既可以被中断也可

以转移的设备。例如笔记本电脑、真空吸尘器和电动汽

车充电，可以在一天中的任意可用的时间段内分段完

成其工作。其数学模型如下： 

 𝛼𝛼𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝛽𝛽𝑖𝑖 − 𝜂𝜂𝑖𝑖 + 1   （9） 

 ∑ 𝛼𝛼𝑖𝑖（𝑡𝑡） = 𝜂𝜂𝑖𝑖𝛽𝛽𝑖𝑖
𝑡𝑡=𝛼𝛼𝑖𝑖    （10） 

 𝑃𝑃𝑖𝑖（𝑡𝑡） = 𝜆𝜆𝑖𝑖 ⋅ 𝛼𝛼𝑖𝑖（𝑡𝑡），𝑖𝑖 ∈ [1，𝑛𝑛3] （11） 

式中，𝜂𝜂𝑖𝑖为总运行时长，𝜆𝜆𝑖𝑖为设备每小时消耗的功率，

𝑛𝑛3为该类设备总数。 
可中断设备是可转移设备的一个子类，为体现复

杂性而单独定义。其特性与可转移设备相同，𝑛𝑛4为该类

设备总数。 
各类家用电器设备的具体参数如表 1 所示[15]。 

电网

预测模块

优化调度模

块

通信与用户

接口模块

EMC 用电设备

不可控负载
冰箱、照明

等

可控负载
空调、洗衣

机等

智能电表/传感器

外部信号（电价/需求响应/天气信息）

gridP
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表 1  家用电器设备参数 

设备类别 设备名称 功率/kW 最早开始时间 最晚结束时间 运行时长/h 设备类型 

基本负载 室内照明 0.84 16 24 6 1 

基本负载 冰箱 0.3 1 24 24 1 

不可中断 洗碗机 1.5 9 17 2 2 

不可中断 洗衣机 1.5 7 15 2 2 

不可中断 烘干机 2.5 13 18 1 2 

可转移 电饭煲 3 6 10 1 3 

可转移 电烤箱 5 15 20 1 3 

可转移 微波炉 1.7 6 10 1 3 

可转移 笔记本电脑 0.1 18 24 2 3 

可转移 台式电脑 0.3 18 24 3 3 

可转移 吸尘器 1.2 9 17 1 3 

可转移 电动汽车 3.5 18 32 3 3 

可转移 热水器 4.5 7 22 2 3 

可转移 空调 2.8 8 20 3 3 

可转移 电饭锅 1.5 10 18 2 3 

可转移 电水壶 1 9 21 1 3 

可转移 水族设备 0.4 6 24 4 3 

可转移 家庭服务器 0.6 8 23 5 3 

可中断 电暖气 2.2 14 22 3 4 

可中断 除湿器 1.8 10 20 4 4 

 
1.2 目标函数与约束条件 
家庭能源调度问题是一个高维、离散、带约束的组

合优化问题。本文同时考虑了总成本和 PAR 两个优化

目标。 
总成本是用户所有设备在 24小时内产生的总电费，

由每小时耗电量与对应时段电价的乘积之和计算得到，

如式（12）所示。 

 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ ��∑ 𝑃𝑃𝑖𝑖(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 ��24

𝑡𝑡=1   （12） 

 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4  （13） 

式中，𝑃𝑃𝑖𝑖(𝑡𝑡)为设备𝑖𝑖在𝑡𝑡时刻的功耗，𝜌𝜌(𝑡𝑡)为𝑡𝑡时刻的电

价，𝑛𝑛为设备总数。 
PAR 是衡量负荷曲线平坦程度的关键指标，其定

义为最大负荷与平均负荷的比值，其计算如式 （14）所

示。 

𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈[1，24]�𝐿𝐿(𝑡𝑡)�� /�（1/24）∑ 𝐿𝐿(𝑡𝑡)24
𝑡𝑡=1 �（14） 

 𝐿𝐿(𝑡𝑡) = ∑ 𝑃𝑃𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 ）   （15） 

式中，𝐿𝐿(𝑡𝑡)表示 t 时刻的总负荷。 
为了同时优化上述两个目标，本文采用加权和法

将其转换为单目标优化问题并进行归一化。目标函数

定义如下： 

𝐹𝐹 = 𝜔𝜔1 ⋅ (𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜔𝜔2 ⋅ (𝑃𝑃𝑃𝑃𝑃𝑃/𝑃𝑃𝑃𝑃𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) （16） 

 𝜔𝜔1 + 𝜔𝜔2 = 1   （17） 

式中，𝜔𝜔1和𝜔𝜔2为不小于 0 的权重系数，𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚为一个足

够大的成本上界，本文取为未调度成本的 1.5 倍，

𝑃𝑃𝑃𝑃𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏为未调度场景下的 PAR 值。权重系数可根据

优化阶段动态调整，如前期侧重成本，后期侧重 PAR。 
约束条件由设备运行时间窗约束、设备运行时长

约束、设备功率约束和依赖关系约束组成。对于每个可

调度设备𝑖𝑖，其启动时间𝑆𝑆𝑖𝑖必须满足式（18）。每个设

备必须完成其预设的总运行时长𝜂𝜂𝑖𝑖，如式 （19）所示。

设备的功率约束如式 （20）所示。依赖关系约束指的是

如烘干机的运行必须在洗衣机运行之后等，如式 （21）
所示。 

 𝛼𝛼𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝛽𝛽𝑖𝑖 − 𝜂𝜂𝑖𝑖 + 1，∀𝑖𝑖 ∈ {可调度设备} （18）
 ∑ 𝛼𝛼𝑖𝑖（𝑡𝑡） = 𝜂𝜂𝑖𝑖𝛽𝛽𝑖𝑖

𝑡𝑡=𝛼𝛼𝑖𝑖 ，∀𝑖𝑖 ∈ {可调度设备}  （19） 

 𝑃𝑃𝑖𝑖（𝑡𝑡） = 𝜆𝜆𝑖𝑖 ⋅ 𝛼𝛼𝑖𝑖（𝑡𝑡） ≤ 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚，∀𝑖𝑖，∀𝑡𝑡 （20） 

 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒 + 𝜂𝜂𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒 （21） 

1.3 复杂度分析 
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对于包含 M 个可调度设备的场景，平均每个设备

有 K 个可行的启动时间，解空间规模为𝑂𝑂（𝐾𝐾𝑀𝑀），在

20 设备复杂场景下，即使 K=10，解空间规模也达到了

1020量级，属于 NP 难问题，传统的精确算法难以在多

项式时间内求解，因此需要采用元启发式算法寻求高

质量的近似解。 
2 DLMMRFO 算法设计 
2.1 MRFO 算法 
MRFO 算法是一种模拟蝠鲼群体智能觅食行为

的元启发式优化算法。蝠鲼群体通过链式觅食、螺旋

觅食、和翻滚觅食这三种独特的觅食策略来在海洋中

高效地搜寻猎物。该算法通过模拟这些觅食行为，在

解空间中进行高效的全局探索和局部开发，以寻找最

优解。 
首先，在链式觅食的过程中，蝠鲼可以看到浮游生

物的位置，并朝浮游生物浓度最高的位置游去，且种群

中每一个个体都会根据这个最优位置进行迭代更新，

个体的位置更新如式（22）所示。 

 𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = �
𝑋𝑋𝑖𝑖（𝑡𝑡） + 𝑟𝑟 ⋅（𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）） + 𝛼𝛼 ⋅（𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）），𝑖𝑖 = 1
𝑋𝑋𝑖𝑖（𝑡𝑡） + 𝑟𝑟 ⋅（𝑋𝑋𝑖𝑖−1（𝑡𝑡） − 𝑋𝑋𝑖𝑖（𝑡𝑡）） + 𝛼𝛼 ⋅（𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡） − 𝑋𝑋𝑖𝑖（𝑡𝑡）），𝑖𝑖 = 2，. . .𝑛𝑛

 （22） 

式中，𝑋𝑋𝑖𝑖(𝑡𝑡 + 1)代表在 t+1 时刻个体𝑖𝑖的位置，r 是一个数值大小在 0 到 1 的随机向量，𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡）是 t 时刻最优解

的位置，𝛼𝛼为权重系数，其计算如式（23）所示。 

 𝛼𝛼 = 2 ⋅ 𝑟𝑟�|𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)|         （23） 

在螺旋觅食的过程中，每当蝠鲼在深水中发现一小块浮游生物时，会以螺旋状的轨迹向猎物移动，个体的位

置更新如式（24）所示。 

 𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = �
𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡） + 𝑟𝑟 ⋅（𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡） − 𝑋𝑋𝑖𝑖（𝑡𝑡）） + 𝛽𝛽 ⋅（𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）），𝑖𝑖 = 1
𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡） + 𝑟𝑟 ⋅（𝑋𝑋𝑖𝑖−1（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）） + 𝛽𝛽 ⋅（𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡） − 𝑋𝑋𝑖𝑖（𝑡𝑡）），𝑖𝑖 = 2，. . .𝑛𝑛

 （24） 

 𝛽𝛽=cos（2𝜋𝜋𝜋𝜋）or𝛽𝛽=sin（2𝜋𝜋𝜋𝜋）        （25） 

式中，𝜔𝜔和 r 是 0 到 1 的随机数，𝛽𝛽为权重系数，在进行以上更新后，所有最优解的位置都被充分利用。为了加强

算法的探索能力，需要再指定一个随机位置来进行更新，如式（26）所示。 

 𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = �
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟（𝑡𝑡） + 𝑟𝑟 ⋅（𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）） + 𝛽𝛽 ⋅（𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）），𝑖𝑖 = 1
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟（𝑡𝑡） + 𝑟𝑟 ⋅（𝑋𝑋𝑖𝑖−1（𝑡𝑡） − 𝑋𝑋𝑖𝑖（𝑡𝑡）） + 𝛽𝛽 ⋅（𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟（𝑡𝑡）− 𝑋𝑋𝑖𝑖（𝑡𝑡）），𝑖𝑖 = 2，. . .𝑛𝑛

 （26） 

 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐿𝐿𝐿𝐿 + 𝑟𝑟 ⋅（𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿）         （27） 

式中，𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟是在搜索空间中生成的随机解，𝑈𝑈𝑈𝑈和𝐿𝐿𝐿𝐿分别是搜索空间的上界和下界。 
在翻滚觅食的过程中，蝠鲼将食物位置当作支点，每个个体围绕着它来回游动，以当前的最优解来更新自己

的位置，个体位置的更新如式（28）所示。 

𝑋𝑋𝑖𝑖（𝑡𝑡 + 1） = 𝑋𝑋𝑖𝑖（𝑡𝑡）+ 𝑆𝑆 ⋅（𝑟𝑟2 ⋅ 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏（𝑡𝑡）− 𝑟𝑟3 ⋅ 𝑋𝑋𝑖𝑖（𝑡𝑡））       （28） 

式中，S 是决定翻腾范围的翻腾因子，r2 和 r3 是介于 0 和 1 之间的随机值。 
 
2.2 DLMMRFO 算法 
HEMS 负载调度问题属于复杂的高维离散调度问

题，原有的 MRFO 算法存在易陷入局部最优和收敛精

度不足等问题。为提高 MRFO 算法的性能，DLMRFO
算法通过引入离散位置更新策略、动态权重机制、长时

记忆机制、遗传算法中的变异操作和 PAR 专项优化策

略来更好地解决此类问题。 
2.2.1 离散位置更新策略 
针对调度问题的离散性质，DLMMRFO 通过引入

离散位置更新策略，有效地增强算法在离散解空间中

的探索能力。该策略主要由动态转移和分级转移机制

组成，动态转移机制的触发条件如式（29）所示。 

𝑇𝑇𝑇𝑇𝑖𝑖，𝑗𝑗 = �
1，  𝑃𝑃𝑗𝑗 > （𝜃𝜃 − 𝛽𝛽 + 𝛾𝛾） ⋅ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
1，  （𝑃𝑃𝑗𝑗 > 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎） ∩（ℎ𝑗𝑗 ∈ 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝）
0，𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 （29） 

式中，β=0.1 为电价高峰时段的奖励因子，𝛾𝛾为算法陷

入停滞时的临时增强因子。𝜃𝜃为动态阈值，𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎为平均

电价，𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 为电价高峰时段集合，𝜃𝜃 的更新公式如式

（30）所示。 

 𝜃𝜃 = 0.5 + 0.2 ⋅（1 − 𝐿𝐿/𝐿𝐿max） （30） 

式中，𝐿𝐿为当前迭代次数，𝐿𝐿max为最大迭代次数。 
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分级转移机制按候选时段将电价水平分为 6 个等

级，其对应的转移概率从 0.98 到 0.30，该机制实现了

精细化搜索控制且使算法能够优先处理功率高以及运

行时间长的设备，提升了算法的搜索效率。设备重要性

的加权公式如式（31）所示。 

 𝜔𝜔𝑖𝑖 = 𝑃𝑃𝑖𝑖 ⋅ 𝑇𝑇𝑖𝑖   （31） 

式中，𝑃𝑃𝑖𝑖为设备 i 的功率，𝑇𝑇𝑖𝑖为其运行时长。 
2.2.2 动态权重机制 
DLMMRFO 通过引入动态权重机制，来平衡迭代

过程中成本和 PAR 两个目标的优化优先级，成本和

PAR 权重的更新公式如式（32）所示。 

 �𝜔𝜔1 = 0.7 − 0.2 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝜔𝜔2 = 1 − 𝜔𝜔1
  （32） 

式中，𝜔𝜔1为成本权重，𝜔𝜔2为 PAR 权重，𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖为当前迭

代次数，𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚为最大迭代次数。 
2.2.3 长时记忆机制 
DLMMRFO 通过引入长时记忆机制来提高算法的

全局探索能力，防止陷入局部最优[16]，长时记忆机制

采用轮盘赌选择机制从记忆库中选择领导者，选择概

率的计算如式（33）所示。 

 𝑃𝑃𝑖𝑖 = 𝑆𝑆𝑗𝑗
∑ 𝑆𝑆𝑗𝑗𝑀𝑀
𝑗𝑗=1

    （33） 

式中，𝑆𝑆𝑗𝑗为第 j 个个体的综合评分。M 为当前记忆库的

容量。 
2.2.4 遗传算法中的变异操作 
DLMMRFO 通过在离散搜索空间中对设备的启动

时间引入单点变异来有效维持种群多样性。设备变异

后的开始时间计算公式如式（34）所示。 

 𝑥𝑥𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑈𝑈（𝑎𝑎𝑗𝑗，𝑏𝑏𝑗𝑗）   （34） 

式中，𝑈𝑈（𝑎𝑎𝑗𝑗，𝑏𝑏𝑗𝑗）为在区间�𝑎𝑎𝑗𝑗，𝑏𝑏𝑗𝑗�上的均匀分布，𝑎𝑎𝑗𝑗为
设备 j 的最早开始时间，𝑏𝑏𝑗𝑗为设备 j 的最晚结束时间。 

2.2.5 PAR 专项优化策略 
DLMMRFO 通过引入 PAR 专项优化策略，有效地

平衡了成本和 PAR 两个目标之间的优化。PAR 专项优

化根据一定条件触发，该触发条件如式（35）所示。 

𝑃𝑃𝑃𝑃𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > ⌊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 0.5⌋) ∧ (𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖，7) = 0)（35） 

式中，𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖为当前迭代数，𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚为大迭代数。 
综上所述，DLMMRFO 算法的流程如图 2 所示，

伪代码如下所示： 
 

算法 1 DLMRFO 算法 

1 初始化：种群大小𝑃𝑃，最大迭代次数𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚，问题维度 d，负载转移算子𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝，𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2，全局最优解𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏和和长时记忆记忆库𝑀𝑀，

生成满足约束的离散初始种群𝑃𝑃。 
2 评估种群中每个个体的适应度值 F 
3 for t = 1 to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 do 
4 for 每个个体𝑋𝑋𝑖𝑖 in 种群𝑃𝑃 
5 动态计算当前权重𝜔𝜔1,𝜔𝜔2 
6 从𝑀𝑀中基于轮盘赌选择领导者𝐿𝐿 
7 if rand<0.5 then 
8                       if 𝑡𝑡/𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 then 
9 按式(26)随机选择参考位置𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟进行螺旋觅食 

10 else 按式(24)围绕随机解进行螺旋觅食 
11 应用离散位置更新策略 
12 end if 
13 else 按式(22)进行链式觅食 
14 应用离散位置更新策略 
15 end if 
16 end for 
17 for 每个个体𝑋𝑋𝑖𝑖按式(28)执行翻滚觅食 
18 应用离散位置更新策略 
19 end for 
20 以概率𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2触发 PAR 专项优化算子并确保新解满足所有硬约束 
21 评估新解的适应度值𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 
22 If 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛<𝐹𝐹𝑖𝑖then 
23 更新 𝑋𝑋𝑖𝑖 和 𝐹𝐹𝑖𝑖 
24 end if 
25 更新全局最优解𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏和长时记忆记忆库 M。 
26 执行自适应种群维护（如注入新解保持多样性） 
27 end for 
28 return 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
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图 2  DLMMRFO 算法流程图 

 
3 实验与结果分析 
3.1 实验与参数设置 
为验证 DLMMRFO 算法的性能，设计了两组仿真

实验场景，并与 MRFO、GA、PSO 算法进行对比分析。

简单场景包含 12 个家用电器，用于验证算法在基准情

况下的正确性与有效性。复杂场景在简单场景基础上

新增了 8 个高功率、长运行时间的可中断/可转移设备，

旨在模拟现代智能家庭中设备数量增多与用电行为复

杂化所带来的挑战。DLMMRFO 参数设置如表 2 所示
[16]。仿真结果以日总成本和 PAR 作为评估指标。所有

实验在 MATLABR2018b 环境中完成，硬件平台设置为

IntelCorei7-10750KCPU@2.60GHz, 8GBRAM。 
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表 2  DLMMRFO 参数设置 

参数 取值 

种群大小 100 

最大迭代次数 100 

记忆库长度 20 

翻滚因子 2.5 

精英比率 0.15 

初始权重 [0.6， 0.4] 

3.2 简单场景结果与分析 
RTP 电价曲线以及模拟电价曲线随机生成的未调

度负载如图 3 所示。在简单场景下，利用 DLMMRFO、

MRFO、GA、PSO 四种算法得到的最优调度曲线以及

对应的每日成本和 PAR 对比结果分别如图 4 和图 5 所

示。上述四种算法在复杂场景下的最优调度曲线，以及

对应的每日成本和 PAR 对比结果分别如图 6 和图 7 所

示。 

 
图 3  电价-负载曲线 

 
图 4  简单场景下最优调度曲线的对比 
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图 5  简单场景下每日成本和 PAR 的对比 

 
图 6  复杂场景下最优调度曲线的对比 

 
图 7  复杂场景下每日成本和 PAR 的对比 

 
对不同算法的调度结果进行对比分析发现，

DLMMRFO 算法在负荷曲线平坦度、总成本及 PAR 方

面均表现最佳。相较于早期经典算法如 GA 和 PSO 算

法，DLMMRFO 算法展现出了更强的全局搜索和避免

早熟收敛的能力。相较于原始 MRFO 算法，DLMMRFO

算法在简单与复杂场景下分别将成本降低了 7.89%与

5.89%，将 PAR 降低了 9.55%与 16.82%。若与未调度

基准相比，其成本降幅更高达 45.30%与 53.29%。这一

结果充分证明了本文所提多策略改进有效提升了

MRFO 算法处理高维离散调度问题的性能。 
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3.3 收敛性分析 
以复杂场景为例，四种算法的成本收敛曲线如图 8

所示。其中，DLMMRFO 算法展现出了更快的收敛速

度和更强的全局勘探能力。与 GA 和 PSO 算法相比，

DLMMRFO 算法在迭代初期便能迅速下降至更低的成

本区间，体现了其优异的初始搜索能力。更重要的是，

在迭代中后期，当GA和PSO算法已明显陷入停滞时，

DLMMRFO 算法凭借其长时记忆和变异机制，仍能发

现更优解，这证明了其改进策略在维持种群多样性和

避免早熟收敛方面的有效性。 

 
图 8  复杂场景算法收敛曲线对比 

 
4 结论 
为了应对MRFO算法在HEMS调度优化中所面临

的种群多样性不足、易陷入局部最优解以及在加权多

目标优化中目标间不均衡的问题，本文提出了一种改

进的 DLMMRFO 算法。通过系统的仿真实验与多维度

对比分析，本文在下列方面取得显著成效： 
（1）DLMMRFO 算法通过在高维离散解空间中直

接进行搜索，避免了连续-离散映射的失配问题，从根

本上提升了算法的性能和效率。 
（2）通过引入动态权重机制和 PAR 专项优化策

略，DLMMRFO 成功解决了复杂场景下成本与 PAR 优

化之间的不平衡问题。在 20 台设备的复杂场景下，算

法不仅显著降低了总成本，同时将 PAR 值降低了

43.67%。 
（3）相比于 MRFO 算法，改进算法提升了收敛精

度，有更好的跳出局部最优的能力，以及更丰富的种群

多样性，更好的平衡多目标之间优化的能力，且在高维

离散场景中具有更强的适应力。 

本研究提出的DLMMRFO算法在解决家庭能源调

度问题上展现了优异的性能。然而，需要指出的是，本

研究构建的模型基于以下关键假设：首先，模型假设电

价与设备功耗为确定性参数，而未考虑现实环境中电

价波动、可再生能源发电的不确定性及用户行为的随

机性；其次，模型仅考虑了从电网购电的单一电能来源，

未纳入住宅光伏、储能系统 （ESS）以及家庭向电网售

电等双向电能交互；最后，当前的优化目标集中于经济

性与电网侧指标，未将用户舒适度作为明确的优化目

标。上述假设在一定程度上限制了模型在实际复杂场

景中的直接应用。 
针对上述局限，未来的研究工作可以从以下几个

方向展开：首先，可引入鲁棒优化或随机规划方法，构

建能够应对电价、可再生能源等不确定性的更复杂的

调度模型。其次，可集成 ESS、电动汽车车联网 （Vehicle-
to-Grid，V2G）技术以及分布式可再生能源，以研究家

庭与电网之间双向能量流动的优化调度模型。同时，将

用户舒适度量化为第三优化目标，并构建多目标优化
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框架，以更好地平衡能效与用户体验。最后，将本研究

提出的算法扩展应用于多户家庭或社区级的调度问题，

探索其在区域能源管理和配网优化中的潜力，从而为

实现更广泛的能源管理和系统协同运行做出贡献。 
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