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脑电信号在癫痫检测中的应用及其研究进展 
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【摘要】癫痫是一种常见的慢性神经系统病症，其核心特点是大脑神经元异常过度放电所导致的突发性、反

复性发作，严重危害患者的生命安全和生活质量。脑电图（EEG）作为生理检测里最常用的一种手段，凭借其非

侵入性、低成本等长处，成为癫痫诊断、分型、病灶定位以及治疗评估的重要工具。本文旨在系统整理基于 EEG
信号的癫痫分析检测应用及其研究进展，探究从传统机器学习方法到现代深度学习架构的发展，核心特征提取与

分类技术，数据采集和专用数据集的运用，最后结合现存的挑战，展望未来的研究方向。 
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The applications and research progress of electroencephalographic (EEG) signals in epilepsy detection 

Yukai Huang, Shumin Liu* 

Jiangxi University of Science and Technology, Nanchang, Jiangxi 

【Abstract】Epilepsy is a common chronic neurological disorder whose core characteristic is sudden and recurrent 
seizures caused by abnormal and excessive discharge of brain neurons, seriously endangering patients' life safety and 
quality of life. Electroencephalography (EEG), as one of the most commonly used methods in physiological detection, has 
become an important tool for epilepsy diagnosis, classification, lesion localization, and treatment evaluation with its 
advantages of non-invasiveness and low cost. This paper aims to systematically sort out the applications and research 
progress of epilepsy analysis and detection based on EEG signals, explore the development from traditional machine 
learning methods to modern deep learning architectures, core feature extraction and classification technologies, and the 
application of data collection and specialized datasets. Finally, combined with existing challenges, future research 
directions are prospected. 
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引言 
癫痫是全球最常见的神经系统疾病之一，其特征

为反复出现的、不可预测的癫痫发作，这些发作由大脑

中神经元突然和异常的电放电引起，对患者的生活质

量、心理健康乃至生命安全构成严重威胁[1]。因此，通

过对癫痫发作的及时预测，从而使患者提前做好准备

减少发病时带来的伤害显得十分重要。 
脑电图（EEG）作为一种无创性电生理记录技术，

通过头皮上的电极采集大脑内同步神经元活动产生的

微伏级电信号[2]，具有毫秒级的时间分辨率，使其在识

别和表征大脑快速动态变化方面具有独特优势。在癫

痫的诊断和研究中，EEG 是不可或缺的工具，它不仅

能够确定发作性事件是否为癫痫发作，还能帮助确定

癫痫发作类型和可能的癫痫综合征，以及评估治疗效

果和风险性。 
传统的 EEG 分析依赖于神经科医生对长时间记录

的肉眼判读，这一过程不仅耗时、费力，且易受观察者

主观经验和疲劳程度的影响，可能导致诊断延误或不

一致。因此，为了克服传统诊断手段的局限性，提高癫

痫诊断的效率，自动监测在长程脑电图记录检测癫痫

发作中起到了重大作用。随着人工智能技术不断突破[3]，

机器学习、深度学习等数据驱动的智能分析方法为解

决癫痫综合征面临的挑战提供新的思路。这些技术旨

在通过算法从复杂的 EEG 数据中自动提取与癫痫相关
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的判别性特征，并构建分类或预测模型，从而辅助医生

进行诊断，减轻其工作负担。因此，可以将癫痫自动检

测的核心问题归纳为特征提取和分类器设计两个子问

题。本文将从特征提取和分类器选择的角度介绍癫痫

自动检测中各个方法的优缺点，并结合该领域目前所

面临的挑战，对未来研究方向进行展望，以期为该领域

研究提供有益参考。 
1 癫痫自动检测流程 
癫痫自动检测研究通常遵循脑电信号采集、脑电

数据预处理、特征提取、模型判别的四步流程，如图 1
所示，下面将对此四步进行逐一介绍。 

2 数据采集与输入 
癫痫脑电信号与普通脑电图的主要区别在于其阵

发性异常放电现象，这是神经元异常同步化爆发活动

的直接体现。癫痫发作时，脑电波的节律、波形及幅值

特征与正常脑电节律存在显著差异，表现为异常的棘

波、尖波、棘慢波、尖慢波、多棘慢波等几种，与正常

脑电信号具有明显区别。 
基于上述癫痫脑电信号以及脑电活动的动态演变

特征，以往研究通常将癫痫患者的脑电信号划分为四

种核心状态：发作间期（interictal）、发作前期（preictal）、
发作期（ictal）和发作后期（postictal）[4]。其中，发作

期，也称作一次癫痫发作事件，是指从癫痫发作开始

到结束的时间段。在明确发作期的时间范围后，发作

前期被定义为发作期之前的 30 分钟，发作后期为发

作期之后的 5～30 分钟，而发作间期则是前一次发作

后期到下一次发作前期的间隔阶段，这一“平静期”

内患者状态与正常人无异，仅可能在发作间期出现孤

立的特异性特征波。图 3 展示了癫痫脑电四种状态的

划分方式。 

 

图 1  基于 EEG 的癫痫自动检测流程 

 

图 2  正常与癫痫脑电比较 
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图 3  癫痫患者脑电的四个状态 

 

图 4  国际 10-20 电极放置标准[6] 

 
脑电信号的采集需精准捕捉各状态下的神经电活

动差异，从采集方式可以将采集信号分为颅内 EEG
（intracranialelectroencepholography, iEEG）和头皮EEG
（calpelectroencepholography, sEEG）两大类[5]。其中，

颅内 EEG 通过颅骨钻孔或开颅手术，将电极安置于脑

硬膜外来捕获癫痫灶起源区域的高分辨率信号，能够

清晰还原异常放电的细节特征；而头皮 EEG 则利用脑

电帽在头皮布设电极，无创且适合临床常规，能够长时

程连续记录全脑的脑电活动。头皮 EEG 的电极摆放位

置和规范对于信号采集的有效性和数据质量至关重要，

需遵循标准化原则，目前最常用的是国际 10-20 电极

放气系统，如图 4 所示，该系统以头颅骨性标志（如鼻

根、枕外隆凸、左右耳前点）为基准，电极位置按头皮

前后、左右方向的比例均匀分布，确保不同个体间的摆

放一致性和数据可比性。研究者通常根据研究课题的

不同选择合适的频率范围、采样率和电极通道数，这能

有效提进工作的效率和提高算法的灵敏度。 
两种采集方式所获信号均为癫痫自动检测模型的

训练与验证提供了核心输入。在目前的癫痫自动检测

研究中，大部分研究采用公开数据集，如表 1 所示。 
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表 1  常见癫痫数据集 

数据集名称 被试数量 信号类型 采样频率/Hz 总发作次数/次 总时长/h 

CHB-MIT[7] 22 sEEG 256 198 844 

Bonn[8] 5（正常人） sEEG 173.61 - 3.28 

 5（患者） iEEG  -  

Freiburg[9] 21 iEEG 256 88 509 

Kaggle[10] 2（患者） iEEG 500/5000 48 627 

 5（病犬）  400 48  

EPILEPSIAE[11] 275 iEEG/sEEG 200 2 662 45 000 

Barcelona[12] 5 iEEG 512 3 750 82 

 
3 数据预处理 
由于原始的 EEG 信号幅值较小且非常不稳定，采

集过程中易受到其他的工频信号干扰，并且癫痫发作

时的意识丧失与肢体动作还会引入不可控外界干扰，

导致头皮 EEG 会存在一定随机性，因此为保障后续特

征分析与分类精度，需在不丢失有效信息的前提对脑

电信号进行预处理，预处理方法按“简单到复杂、基础

到智能”的逻辑可分为以下几类： 
1）基线矫正：原始脑电信号常因电极极化、仪器

漂移出现缓慢基线偏移，需通过零均值化或线性拟合，

将信号基线调整至平稳水平，避免漂移干扰幅值判断。 
2）阈值初筛：阈值初筛是癫痫脑电信号预处理中

的关键步骤，主要通过设定阈值来初步筛选异常信号。 
3）伪迹分段标记：常见的伪迹信号有：眼电伪迹、

肌电伪迹、电极移位、散发伪迹以及弥漫性快速尖锐的

α波等。该阶段采用“初步筛选+精准识别”的两步法

处理 EEG 信号伪迹，第一步通过规则化扫描锁定疑似

区域：在连续信号中设置检测窗口，当窗口内信号方差

突变、前后半段电压差超过设定阈值时，初步判定为伪

迹疑似片段并完成标记；第二步结合专家经验实现精

准识别，从而精准区分伪迹与有效脑电信号，为后续信

号分析排除干扰。 
4）信号滤波：癫痫脑电信号由于采集过程中会受

到多种噪声干扰，如工频干扰、基线漂移、运动伪迹等，

因此滤波处理是癫痫脑电信号预处理的重要环节。由

于除了 γ 波以外的脑电信号均在 30Hz 以内，因此 1～
60Hz 的带通滤波[13]是一种常见的 EEG 信号预处理方

法。由于伪迹与有效信号频段重叠，因此还需通过高阶

统计量或时频分析实现精准分离。独立成分分析（ICA）

是一种先进的盲源分离技术，它能够从混合的脑电信

号中提取独立的源信号，有效分离噪声和伪迹[14]。与

传统的主成分分析（PCA）降维技术不同，ICA 通过非

线性变换，能够处理非高斯分布的信号，从而在脑电信

号处理中发挥重要作用[15]。 
5）智能模型去噪：近年来，随着人工智能技术的

不断进步，深度学习模型在去除脑电数据噪声方面取

得了显著成效。这些模型通过学习捕捉伪迹和癫痫信

号的复杂特征，实现了端到端的去噪处理。 
4 基于脑电的癫痫自动检测中的特征 
通过对脑电信号的分析进而提取出有效的特征作

为模型输入，是实现癫痫自动检测重要的一环。本节将

基于线性分析、非线性分析及脑网络理论，介绍在癫痫

脑电信号处理过程中常见的五类特征： 
时域特征是脑电信号处理中最基础且应用最广泛

的特征类型，主要通过直接对原始时域波形进行统计

量化或形态分析来提取，其类型涵盖数值分布、波动幅

度、形态变化等核心信息，主要关注脑电信号在时间序

列维度上的统计与动态特性，如波形长度（WL）、过

零点数（ZC）、斜率符号变化（SSC）、平均绝对值

（MAV）、标准差（SD）和平均功率（AVP）等。时

域特征的突出优势在于计算逻辑简洁、物理意义直观，

便于研究者快速理解信号的瞬时变化规律，但受脑电

信号固有的非平稳性、个体生理差异及头皮电极采集

过程中的外界干扰影响，单一时域特征的鲁棒性与泛

化能力往往有限。 
频域特征的核心依据在于：癫痫发作前后，脑电信

号的频率成分与能量分布会发生显著变化，但其分析

通常基于“背景脑电信号近似平稳”的假设，这与脑

电信号实际的非平稳特性存在一定偏差。频域分析关

注脑电信号能量在不同频率带的分布，如 δ（0.5–4Hz）、
θ（4–8Hz）、α（8–13Hz）、β（13–30Hz）和 γ（30Hz）
波段的功率谱密度（PSD）、频带能量及谱熵等指标。



黄宇凯，刘述民                                                         脑电信号在癫痫检测中的应用及其研究进展 

- 9 - 

此类特征多源于对信号功率谱的深度解析，通过傅里

叶变换等方法将时域信号转换为频率域后，提取各频

段功率、峰值频率、频谱边缘等量化指标，其特征质量

高度依赖功率谱估计的参数准确度，能有效刻画信号

的节律性变化，但难以捕捉瞬时动态信息。 
时频特征的提出，旨在弥补时域与频域特征的单一

表征缺陷。例如，在脑电信号处理中，时频分析方法能

够提取信号的时域和频域特征，为深入研究提供支持。

时域特征缺乏频率维度信息，而频域特征则丢失时间动

态特性，时频分析方法则能够适应非平稳信号，提供更

丰富的时频特性信息。该类特征通过短时傅里叶变换、

小波变换等时频联合变换方法，将非平稳脑电信号映射

到时频平面，实现对信号“时间－频率－能量”三维信

息的同步刻画，既保留了时域的瞬时动态性，又兼具频

域的节律性表征能力，完美适配脑电信号的非平稳本质。 
非线性特征基于“大脑是复杂混沌动力系统”的

核心认知，聚焦脑电信号的非线性动力学特性，通过近

似熵（ApEn）、样本熵（SampEn）、关联维数（CD）、

最大 Lyapunov 指数（LLE）以及 Hurst 指数等特征反

映癫痫发作时脑活动从高复杂度向低复杂度、从无规

律波动向异常同步化收敛的趋势。其最大优势在于完

全摆脱平稳性假设的束缚，精准适配脑电信号的非平

稳本质，同时在多通道信号关联分析、部分通道数据缺

失等复杂场景下表现出更强的适应性，能有效刻画癫

痫发作前大脑系统从混沌到有序的动态转变过程。 
脑网络特征是基于神经科学中“大脑各脑区存在

功能关联”的核心理论，通过相位锁定值（PLV）、相

干性（COH）、Granger 因果分析及图论指标（如聚类

系数、平均路径长度、小世界指数）表征癫痫发作期间

网络同步增强、功能连接异常扩散及脑网络拓扑由小

世界结构向过度耦合模式转变的过程。该类特征的核

心价值在于突破单一通道的局部表征局限，从宏观视

角刻画脑区间的协同活动模式与异常放电的传播路径，

既能反映局部脑区的异常同步，又能捕捉全脑网络的

拓扑重构，为致痫灶定位、发作机制解析提供了更全面

的视角，是近年来癫痫脑电分析的重要研究方向。表 2
归纳了近年来癫痫自动检测研究中涉及的特征提取方

式以及对应的参考文献。 

表 2  癫痫发作前基于脑电信号的特征总结 

文献 特征 类型 

Gotman[16] 统计特征（振幅、周期） 

时域特征 
Hjorth[17] Hjorth 参数 

Rasekhi[18] 均方误差 

Slimen[19] 尖峰幅值、平均尖峰率 

Liu[20] 功率谱密度 

频域特征 
Gao 等[21] 快速傅里叶变换 

Park[22] α，β，θ，γ，δ 波的功率谱并求其均值、方差、标准差等特征 

Zhang 等[23] 频谱功率比、相对频谱功率 

Ramos 等[24] 短时傅里叶变换 

时频特征 Shen[25] 离散小波变换 

Ghayab[26]  使用可调 Q 因子小波变换进行时频变换并提取均值、方差、标准差、偏态、峰度、中值等特征 

OSOWSK[27] 最大利雅普诺夫指数 

非线性特征 Xu 等[28] 近似熵、样本熵、排列熵、谱熵和小波熵 

Jacob[29] 分形维数 

Yi[30] 相位锁定值 
脑网络 

Yang[31] 平均相位相干性 
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表 3  基于脑电信号癫痫发作预测识别技术研究归纳 

文献 数据集 分类器 类型 

Park[32] Freiburg SVM 

机器学习 Slimen 等[33] CHB-MIT LDA 

RPinto 等[34] 19 名 TLE 患者，49 次发作，710h 连续 EEG LR 

Zhou 等[35] Bonn / CHB-MIT CNN 

深度学习 
Mirowski 等[36] Freiburg RNN 

Tsiouris[37] CHB-MIT LSTM 

Yan[38] CHB-MIT Transformer 

 
5 癫痫自动监测的分类模型 
5.1 基于机器学习的癫痫发作预测方式 
近年来，随着人工智能技术的快速发展，特别是在

机器学习和深度学习模型的应用，癫痫发作预测方案

得到了显著的进展。例如，深度学习模型如卷积神经网

络（CNN）和长短期记忆网络（LSTM）在医学信号分

析中表现出色，能够有效提高癫痫发作预测的准确率。 
早期研究以传统机器学习为主，因其既充分借鉴

了人脑的智能学习方法和认知能力，又拥有计算机的

庞大算力作为支撑，故而在癫痫自动预测领域愈发重

要。SVM（Support vector machines, SVM）能在高维特

征空间做二类分割，是早期 EEG 发展预测常用的判别

器。2011 年，Park[32]等在 Epilepsia 的工作提出了基于

多频带谱功率特征与代价敏感 SVM 的患者特异预测

框架，使用 Freiburg/iEEG 数据（80 次发作、约 433h
间歇记录），在双交叉验证的外样测试中报告了高灵敏

度（示例：97.5%）且极低的误报率（约 0.2–0.27 次/小
时）。 

线性判别分析（Lineardiscriminantanalysis, LDA）

是监督学习中兼具特征降维与分类功能的经典算法，

核心目标是通过线性投影将高维数据映射到低维空间，

同时最大化不同类别样本的分离度，广泛应用于脑电

癫痫检测、模式识别等领域。Slimen 等[33]在头皮 EEG
的研究中采用LDA等线性方法作为基线来检测与比较

发作间期/发作前期/发作期的尖峰与谱特征，展示了通

过合适的时域/频域特征，LDA 在某些设置下可提供可

接受的检测性能（并可作为复杂模型的解释性对照）。 
逻辑回归（Logistic Regression， LR）核心用于分

类任务（尤其二分类）是解释性极强的线性概率模型，

其原理简单，训练高效，可解释性强，常用来进行医疗

诊断任务。Pinto[34]等开发了一种以逻辑回归（LR）为

核心分类器的癫痫发作预测框架，该框架通过患者特

异性进化算法筛选超特征，并结合深度学习算法进行

特征提取和分类，以实现高准确率的预测。 
5.2 基于深度学习的癫痫发作预测方式 
随着深度学习技术的迅猛发展和突破性进展，研

究者们逐渐摒弃了传统手工特征提取的烦琐流程，转

而探索利用深度神经网络直接从原始脑电信号中自动

学习时空特征的新范式。其中，卷积神经网络（CNN）

凭借其强大的局部特征提取和空间模式识别能力，能

够有效捕捉 EEG 信号在头皮电极空间分布上的拓扑结

构；例如，Zhou 等[35]提出了一种基于轻量化 CNN（包

含 3 层核心结构）的端到端癫痫发作检测框架，该框

架能够直接处理脑电信号的时域和频域数据（频域数

据通过 FFT 转换获得）。在使用 Freiburg（颅内）和

CHB-MIT（头皮）数据库进行的二分类（发作间期 vs
发作前期/发作期）及三分类任务中，研究结果表明频

域信号的分类性能显著优于时域信号，这为临床实时

癫痫发作检测提供了一种可行的解决方案。而循环神

经网络（RNN）及其变体如门控循环单元（GRU），

则通过其独特的记忆机制，能够建模 EEG 信号在时间

维度上的动态变化和长期依赖关系。Mirowski 等[36]在

早期工作中利用递归结构学习 EEG 同步化模式的时空

演变，以捕捉发作前的动态征兆，结果在侵入性 iEEG
（Freiburg 数据集）上取得了良好的判别能力，表明

RNN 能有效表示发作前的时序演化。随后 LSTM（长

短期记忆）被引入以解决基本 RNN 的长期记忆瓶颈问

题：Tsiouris[37]等在 CHB-MIT 数据集上采用堆叠 LSTM
来预测发作，取得了高灵敏度和特异度，验证了 LSTM
在建模前驱长程依赖上的优势该方法有效区分了发作

前状态和间歇状态，提高了预测的准确性和时效性。近

年来，自注意力/Transformer 架构因其捕获全局、长程

依赖与可并行化的优势被引入 EEG 领域。例如 Yan[38]

基于Transformer的模型能直接对时序或时频补丁做自
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注意力建模，从而同时学习跨通道与跨时间的相互作

用，这对于复杂的发作前驱模式识别尤其重要。 
根据上述文献调研可发现，基于深度学习的算法

在未来的癫痫脑电检测上十分有潜力。 
6 总结与展望 
基于脑电图（EEG）的癫痫自动检测技术，作为临

床辅助诊断的核心，不仅能够利用 EEG 高时间分辨率、

无创性及实时监测脑神经元活动变化的优势，而且能

够有效克服传统人工判读的效率低下、主观性强和对

专家经验过度依赖的问题。这些自动检测技术的发展，

对于提高癫痫诊断的及时性、准确性以及优化医疗资

源的使用具有显著的积极影响。本文详细介绍了基于

EEG 的癫痫检测过程，涵盖数据采集、信号预处理、

多维度特征挖掘（时域、频域、时频域及非线性动力学

特征等）、分类模型训练与优化四大关键环节，其中特

征的判别有效性与模型的泛化适配能力是决定检测性

能的核心，当前相关研究已在特定数据集和场景下取

得阶段性成果，但面向复杂临床需求仍有较大提升空

间。 
根据上述调研与分析，结合临床实际应用场景的

多元需求，本文从以下几个方面对该领域今后的研究

方向进行展望：1）目前，基于传统机器学习的癫痫发

作检测已具备较高准确度，但针对癫痫亚型疾病及发

作期与发作间期的区分，仍需进一步深入研究；2）不

同医疗机构的 EEG 采集设备、参数设置、电极布局等

差异导致数据分布异质性显著，这在高原缺氧环境下

对认知障碍的 EEG 差异性分析中也得到了体现。现有

模型在跨中心数据上泛化性能衰减明显，因此，未来构

建域自适应模型以消除数据分布差异，是实现技术规

模化临床应用的关键。3）为提升可解释性与临床适配

性，现有深度学习模型多依赖“黑箱”式特征提取，其

决策逻辑与临床医生的判读依据存在脱节。未来，需结

合临床先验知识设计可解释性模块，通过特征可视化、

决策路径追溯等手段，增强模型的临床接受度；4）在

多维度临床信息的融合应用方面，除纯 EEG 信号外，

还可考虑将患者的其他生理指标（如心电、皮电、血氧

饱和度等）与癫痫发作紧密关联。未来，需探索多模态

信息融合框架，将非脑电临床数据与 EEG 特征有机结

合，以进一步突破单一信号源的性能瓶颈。 
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