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The transgenerational effects of PM>5on hypertension and possible mechanisms
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[ Abstract] Hypertension is a result of the combined effects of environmental and genetic factors. The progression
of hypertension caused by PM, s has been a hot topic in recent studies, while the impact of prenatal or paternal PM, s
exposure on blood pressure and cardiovascular systems are increasingly attracted public attention. The mechanisms may
involve transgenerational inheritance through oxidative stress, adverse intrauterine environments, DNA methylation,
IncRNAs, and so on. This article focuses on reviewing the effects of PM,s on hypertension, including its impact on
offspring's hypertension during pregnancy, paternal PM,s exposure, and potential epigenetic mechanisms. It aims to
provide a theoretical foundation for clarifying the pathogenesis of PM, s-induced hypertension and offer new research
perspectives for personalized hypertension treatment.
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