综采工作面顶板来压预测与支护优化方法分析

马凯

宁夏瑞鸿韦二矿业有限公司韦二南井 宁夏吴忠

【摘要】综采工作面顶板来压是煤矿生产中影响安全与效率的重要因素,准确预测其来压时间与强度是实现科学支护的关键。通过分析地质条件、煤层赋存特征及采掘工艺参数,构建了顶板来压预测模型,并结合现场监测数据进行修正,以提高预测的精确性。在支护优化方面,综合运用数值模拟与力学分析方法,对支护参数、支架类型及布置方式进行优化设计,确保支护系统在顶板来压过程中的稳定性与适应性。该方法能够有效降低顶板事故风险,延长支架使用寿命,并提升工作面生产效率,为综采工作面的安全高效生产提供了理论支持与技术参考。

【关键词】综采工作面: 顶板来压预测: 支护优化: 数值模拟

【收稿日期】2025年6月13日

【出刊日期】2025年7月11日

[DOI] 10.12208/j.jer.20250343

Analysis on prediction of roof weighting and support optimization methods in fully mechanized mining face

Kai Ma

Ningxia Ruihong Wei Er Mining Co., Ltd. Wei Er Nan Jing, Wuzhong, Ningxia

【Abstract】 Roof weighting in fully mechanized mining face is a crucial factor affecting safety and efficiency in coal mine production. Accurately predicting the timing and intensity of roof weighting is the key to achieving scientific support. By analyzing geological conditions, coal seam occurrence characteristics, and mining process parameters, a roof weighting prediction model is constructed, which is further revised with on-site monitoring data to improve prediction accuracy. In terms of support optimization, numerical simulation and mechanical analysis methods are comprehensively applied to optimize the design of support parameters, support types, and arrangement methods, ensuring the stability and adaptability of the support system during roof weighting. This method can effectively reduce the risk of roof accidents, extend the service life of supports, and improve the production efficiency of the working face, providing theoretical support and technical reference for the safe and efficient production of fully mechanized mining faces.

Keywords Fully mechanized mining face; Roof weighting prediction; Support optimization; Numerical simulation

引言

煤矿综采工作面顶板来压问题一直是制约生产安全与效率的关键因素,其预测与支护优化技术的发展直接关系到矿井的稳定运行。顶板来压具有突发性与不确定性,一旦预测不准或支护不当,极易引发顶板垮落、设备损坏及人员伤亡等事故。近年来,随着传感监测技术、数值模拟技术及智能分析方法的应用,顶板来压预测的精度和支护设计的科学性得到了显著提升。然而,如何在复杂地质条件和多变采掘环境下实现精准预测与高效支护,仍是煤矿工程技术人员面临的挑战。本文将从来压预测机理、监测与分析方法、支护优化策略三个方面展开研究,旨在为综采工作面提供切实可行的安全保障方案。

1 综采工作面顶板来压特征与影响因素分析

综采工作面顶板来压过程通常表现为初次来压与 周期来压两个阶段。初次来压时间与工作面推进距离、 煤层厚度、顶板岩性及层理结构密切相关。初次来压发 生时,顶板结构失稳,原有平衡状态被破坏,承载能力 迅速下降,易引发大面积垮落。周期来压则表现为周期 性破断,顶板周期来压步距由采场地质条件及支护刚 度决定。在这一过程中,顶板岩层会发生弯曲、拉伸及 剪切破坏,形成特定的应力集中区。应力传递与释放具 有明显的阶段性和区域性特征,支架承载力曲线与顶 板来压频率、强度呈正相关关系,这一特征为预测和防 范提供了理论基础。

影响顶板来压的因素十分复杂, 其中地质构造条

件是决定性因素之一。断层、褶皱、陷落柱等结构会导致顶板岩层连续性遭到破坏,应力分布出现不均,从而改变来压规律。煤层顶板岩性硬度与厚度直接影响岩层的破断方式和来压强度,厚硬顶板在破断时释放的能量较大,而薄弱顶板则易于频繁垮落[1]。采掘工艺因素同样不可忽视,如工作面推进速度、采高设计、支架布置形式均会改变顶板应力的演化过程。支架初撑力不足或支护方式不匹配,会加剧顶板下沉与来压频率的变化,增加不稳定风险。

在生产实践中,水文地质条件对顶板来压的影响 也逐渐受到重视。地下水渗透可能引起顶板岩层软化, 降低岩石强度,进而缩短初次来压步距并提高周期来 压频率。顶板含水率变化会改变摩擦系数和黏结力,使 原本稳定的岩层结构变得脆弱。综采工作面上覆岩层 厚度、埋深及地应力场变化,都会引起顶板承载状态的 动态调整。综合分析这些因素,可以为顶板来压预测提 供精准的输入参数,为支护优化奠定基础。

2 基于监测与模拟的顶板来压预测方法研究

顶板来压预测的核心在于建立可反映真实地质和 采掘条件的动态模型。基于工作面布置的在线监测系统,利用压力传感器、顶板离层仪、应力计等设备实时 采集数据,可以掌握支架载荷变化、顶板下沉速率及离 层情况。通过对这些数据进行时序分析,可提取来压前 的特征信号,例如载荷的阶梯式增长、顶板下沉速率的 明显加快等。在监测数据的支撑下,可将实测信息输入 预测模型,实现对来压时间、步距及强度的提前预警。

数值模拟方法在顶板来压预测中发挥着不可替代的作用。利用 FLAC3D、UDEC 等岩土工程模拟软件,可在虚拟环境中重现不同地质条件下的顶板破断与应力演化过程。通过建立包含煤层、顶板、支架及巷道围岩的三维数值模型,可以模拟不同推进速度、支护参数及顶板岩性条件下的来压变化。模拟结果能够揭示应力集中区的位置、顶板弯曲破断模式以及来压步距变化规律。将模拟结果与现场监测数据进行比对,可以不断修正模型参数,使预测更加符合实际生产情况。

在复杂地质条件下,融合多源信息的预测方法具有更高的可靠性。将地震波监测、微震监测与常规压力监测相结合,可以在顶板破断发生前捕捉到岩层内部微裂隙扩展的信号。机器学习算法在数据分析中表现出强大的模式识别能力,通过对历史监测数据进行训练,可以识别不同工况下的来压特征模式^[2]。基于支持向量机、随机森林或深度神经网络的预测模型,可实现对来压事件的自动识别与风险等级划分。这种预测模

式的引入,提升了预警的时效性与准确性,为支护优化提供了数据支持。

3 支护系统优化设计与稳定性提升措施

支护系统的设计优化必须基于对顶板来压特征与 预测结果的综合分析。高强度液压支架是综采工作面 的主要支护装备,其初撑力、工作阻力和高度调节范围 直接决定了顶板控制效果。根据预测的来压步距和强 度,可调整支架的初撑力和工作阻力参数,使支护能力 与顶板受力状态相匹配。在支架布置方面,合理控制支 架间距,确保顶板荷载均匀分布,能够减少局部应力集 中引发的垮落风险。对于来压频繁或强度较高的区域, 可采用加密布置或增加辅助支护的方式提升稳定性。

在设计过程中,应综合考虑支护设备与围岩的协同作用。支架立柱与顶梁的接触面形状、摩擦系数及垫板厚度都会影响受力传递效率。采用高摩擦系数垫板可提高接触稳定性,减少顶板滑移风险。顶梁结构优化能够减小局部应力集中,防止在来压时产生塑性变形。对于软弱围岩和破碎顶板,可在支架后方增设可缩性金属网、锚杆或喷浆加固,以提升整体承载能力。通过对支护系统关键部件的结构改进与材料升级,可以延长使用寿命并降低维护频率。

稳定性提升还需要依托动态调整机制。根据实时 监测的来压信号,可以对支架的工作阻力进行自动调 节,使其在来压前进入高阻力状态,来压后逐步释放压 力,减缓冲击荷载。引入智能液压控制系统,结合传感 器反馈,实现支架状态的自动监测与参数调整,能够在 不同工况下保持稳定的支护效果。通过这一系列措施, 不仅能有效抵御顶板来压的冲击,还能降低能耗和支 护成本,为综采工作面创造更安全、高效的作业环境。

在支护系统优化的实施过程中,还应注重与矿井整体生产系统的协调配合,使顶板控制措施与采煤工艺、运输系统及通风布局形成有机衔接。通过建立支护系统全生命周期管理模式,从设计、安装、运行到维护各环节进行动态监控与评估,及时发现潜在隐患并调整方案[3-6]。利用三维可视化技术和虚拟仿真平台,可在施工前模拟不同支护参数对顶板稳定性的影响,从而在方案制定阶段就实现科学决策。将预测数据与支护参数变化曲线纳入统一数据库,有助于形成长期运行规律分析,为后续工作面提供参考。这种前瞻性管理与技术集成的模式,不仅能够增强支护系统的适应性与韧性,还为综采工作面安全高效运行提供了更为稳固的技术保障。

4 预测与支护一体化在综采工作面中的应用成效

分析

将预测与支护优化相结合,实现一体化应用,能够显著提升综采工作面的安全性与经济效益。这种模式的核心是将预测结果与支护控制实现实时闭环,当监测系统捕捉到顶板应力异常变化、支架载荷突增或岩层离层趋势加剧时,支护系统能够迅速作出反应,通过自动调整初撑力、增加阻力或启动辅助支护手段来抵御冲击^[7]。系统之间的联动减少了信息传递与人工决策的时间差,降低了人为判断失误的可能性,使应对措施更具针对性和有效性。该过程不仅依赖精确的传感器采集与高效的数据分析算法,还需要支护装备具备良好的响应性能和可调节性,以确保预测与控制无缝衔接,实现持续稳定的顶板控制效果。

一体化应用还在生产组织与效率管理方面带来显著改善。传统模式下,支护方案常依据初期地质勘探或经验制定,缺乏对实时顶板状态的适应性,导致在地质条件突变时容易出现支护过弱或过强的问题,从而影响推进进度与资源利用率。通过将实时预测结果融入支护控制逻辑,能够动态优化支架参数,避免无效加固和过度能耗,同时降低人工巡检与维护的频率。支护系统在保持安全系数的前提下可实现柔性调节,使工作面在复杂条件下依然保持稳定推进,减少停工等待时间,提升全周期生产衔接性和资源配置的合理性,进一步增强了采煤作业的连续性与经济可行性。

在安全与经济效益的双重推动下,一体化应用模式展现出强大的推广潜力。为了进一步提高适应能力与技术深度,可以将人工智能、大数据分析、无线传感网络等新一代信息技术全面引入,实现对不同矿区地质特征、应力演化模式和支护需求的精准匹配。云端数据平台能够打破区域限制,实现跨矿区的经验共享与算法迭代,支护策略可根据海量案例不断优化^[8]。结合自适应控制算法,系统能够在不同作业阶段自动学习并调整支护参数,实现真正意义上的智能化支护。此类技术升级不仅能提升矿井应对复杂地质条件的能力,还能推动煤矿生产向数字化、智能化方向加速转型,形

成更具前瞻性的安全保障体系。

5 结语

在安全与经济效益的双重驱动下,综采工作面顶板来压预测与支护优化的一体化模式,为煤矿生产提供了更加科学、高效的控制方案。这种模式不仅实现了预测结果与支护系统的即时联动,还通过智能化技术的引入,使支护策略能够动态适应复杂多变的地质环境。实践表明,该模式能有效降低事故风险、提升设备稳定性,并在保障安全的前提下优化生产组织与资源配置。未来,随着人工智能、物联网和大数据分析的进一步融合,一体化模式将持续优化,为煤矿安全生产和智能化发展奠定更加坚实的基础。

参考文献

- [1] 高乾.煤矿综采工作面顶板管理技术探讨[J].西部探矿工程,2025,37(06):188-190.
- [2] 张凯,姜广东,陈庆广.综采工作面项板控制技术应用研究[J].内蒙古煤炭经济,2025(11):124-126.
- [3] 张盛龙,宋建林.综采工作面顶板控制技术应用研究[J]. 内蒙古煤炭经济,2025(10):7-9.
- [4] 韩瑞峰.煤矿综采工作面顶板支护的安全管理探究[J].矿业装备,2025(01):86-88.
- [5] 耿亮亮.综采工作面末采挂网工艺技术分析与创新应用 [J].内蒙古煤炭经济, 2024 (19): 157-159.
- [6] 秦佳斌.综采工作面顶板来压规律的模拟研究[J].煤炭与 化工,2022.45(10):34-35+39+149.
- [7] 程卫卫.5101 综采工作面项板围岩控制技术研究与应用 [J].能源技术与管理,2020,45(06):69-71.
- [8] 吕怀宝,陈博,薛振江.综采工作面顶板来压特征与支护效果研究[J].西部探矿工程,2020,32(06):148-150.

版权声明: ©2025 作者与开放获取期刊研究中心(OAJRC)所有。本文章按照知识共享署名许可条款发表。

https://creativecommons.org/licenses/by/4.0/

