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基于 QR 分解的约束二次优化方法：在投资组合优化中的应用 
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【摘要】本文研究了 QR 分解在带等式约束的二次优化问题中的应用，并以 Markowitz 投资组合模型

为主要实例。通过对约束矩阵进行正交分解，QR 方法能够在代数上实现约束的消元，将原问题降维为无约

束形式，从而避免传统 KKT 系统中不定矩阵的数值不稳定。本文建立了三资产投资组合与四资产发电结构

两类算例，分别采用 QR 方法与 KKT 方法进行数值对比。结果显示，QR 方法将系统条件数降低了一个数

量级，显著提升了计算精度与算法鲁棒性。此外，QR 分解在几何上提供了清晰的投影解释，增强了约束优

化问题的直观性与可解释性。该方法在金融投资、能源结构与其他资源分配类问题中具有推广价值。 
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A QR decomposition approach to constrained quadratic optimization: an application to portfolio models 
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【Abstract】This paper investigates the application of the QR decomposition to equality-constrained quadratic 
optimization problems, with the Markowitz portfolio model serving as the main example. By performing an 
orthogonal decomposition of the constraint matrix, the QR-based approach eliminates equality constraints 
algebraically and transforms the original problem into a reduced, unconstrained form, thereby avoiding the numerical 
instability inherent in the indefinite KKT system. Two representative models are analyzed—a three-asset portfolio 
and a four-asset power generation structure—accompanied by numerical comparison between two methods. The 
results demonstrate that the QR method reduces the system condition number by an order of magnitude, thereby 
significantly enhancing computational accuracy and algorithmic robustness. Besides, QR method provides a clearer 
geometric interpretation through orthogonal projection, offering an intuitive framework for constrained optimization. 
The approach is applicable to financial, energy, and other resource-allocation optimization problems. 
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1 引言 
二次优化问题（Quadratic Optimization Problems, QP）在应用数学、运筹学与金融工程中具有核心地位。

其一般形式是最小化一个二次目标函数并满足若干线性约束，这类问题在结构力学、控制理论、数据科学和

金融数学中都有广泛的应用。20 世纪以来，二次优化逐渐成为凸优化理论和数值方法研究的重要分支。 
在金融领域，一个被广泛认为的代表性应用是 Markowitz 于 1952 年提出的均值-方差投资组合模型[1]，

它首次用方差作为风险度量，将风险与期望收益统一纳入数学框架。该模型为现代投资组合理论奠定了基

础，并推动了后续的金融工程与最优化方法研究[2]。这一模型的基本思想是：在期望收益一定的条件下最小
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化投资风险，或在风险一定的条件下最大化期望收益。其数学模型自然归结为带有预算约束和其他可能结构

性约束的二次优化问题，因此不仅在金融领域，而且在凸优化和数值分析方法的发展中都有深远影响。 
针对这类约束二次优化问题，经典的求解方法主要有拉格朗日乘子法与 Karush-Kuhn-Tucker （KKT） 

法。两者实际上同属拉格朗日对偶理论的不同侧面：拉格朗日乘子法强调通过构造拉格朗日函数把约束并入

目标，而 KKT 条件在凸优化场景下则给出最优解的必要和充分判据。这一统一框架奠定了现代最优性条

件与对偶理论的基础（见 Nocedal & Wright [3], Boyd & Vandenberghe[4]）。然而在实际计算中，它们存在两

个主要不足：首先，KKT 系统通常是不定矩阵，导致数值计算中的稳定性较差；其次，若采用正规方程的

方式处理约束，系统的条件数会被平方放大，使得问题在高维或病态情况下极易失稳。 
另一方面，数值线性代数的发展为该类问题提供了新的视角。早在 1970 年代，Gill、Golub、Murray 与 

Saunders 等学者就在约束优化研究中引入矩阵分解以增强数值稳定性[5]，随后 Goldfarb [6]以及 Goldfarb-
Idnani [7]也在二次规划的研究中延续并发展了这一思路。Golub 与 Van Loan 在 Matrix Computations [8]中系

统论证了 QR 分解在最小二乘问题中的数值优势，而  Higham 在  Accuracy and Stability of Numerical 
Algorithms [9]中则明确指出 QR 分解是一种后向稳定的算法。由于正交矩阵保持向量范数和角度，QR 方法

在投影、消元以及条件数控制方面具有天然优势。 
在此背景下，本文尝试以 Markowitz 投资组合模型为例，采用 QR 分解对预算约束与期望收益约束进

行代数化处理，并从代数与几何双重视角梳理“约束消去-降维”的思路。通过对模型的分析和算例，我们

展示了 QR 方法的代数简洁性与数值可靠性，并与传统的 KKT 方法进行了对比；特别地，在两个具有现

实风格的三资产和四资产算例中，进一步说明了这一方法在金融和能源领域中的实际意义。 
2 理论基础 
2.1 Markowitz 投资组合模型 
Markowitz 于 1952 年提出的均值–方差理论，为投资决策提供了一个系统的数学框架。其基本原理是：

在给定资金总额的条件下，通过合理分配各类资产的权重，使投资组合的期望收益满足目标要求，并在此基

础上尽可能降低风险。风险用收益的方差来度量，方差不仅体现单个资产的波动性，还包含资产之间的协方

差效应，因此分散化投资能够降低整体风险。 

设投资组合的权重为向量𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇，资产的期望收益向量为 ，协方差矩阵为 

，向量 表示预算约束。组合的风险函数定义为： .（此处系数  仅为符号规

范，用以简化推导，不影响最优解的位置；1952 年原始模型中未显式包含该系数。）组合的期望收益为：

 .在最简单的形式下，只考虑预算约束： 

  （2.1） 

这一模型表示在总投资额固定的条件下，寻找风险最小的组合。它常被用作数值推导的起点。在经典情

形下，还需在预算约束的基础上加入收益约束： 

  （2.2） 

其中  为给定的目标收益水平。这一双等式约束的形式正是 Markowitz （1952）提出的原始模型[1]。

通过改变 r，可以得到一系列最优组合，连成曲线后形成著名的有效前沿 （efficient frontier）[2]。 
需要说明的是，Markowitz 均值-方差模型不仅适用于金融投资组合，也可以抽象为一类通用的风险–

收益型资源分配模型：在总资源约束下，合理分配各类投入，使得整体的平均回报达到预期，并在此条件下

最小化风险。这一思想已被广泛借鉴于能源调度、供应链管理、农业种植以及医疗资源配置等多个领域。 
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2.2 经典方法与数值缺陷 
在带约束的二次优化问题中，最常见的求解方法包括拉格朗日乘子法与其推广形式 Karush-Kuhn-

Tucker （KKT）法。两者在理论上等价。基本思想是将约束条件并入目标函数，从而在统一框架下同时处

理目标与约束。 
设优化问题为 ，其中  为协方差矩阵， 为约束矩阵， 。

根据拉格朗日乘子法，构造拉格朗日函数： 

 

由驻点条件得到线性方程组： 

  （2.3） 

该增广系统（2.3）即为 KKT 系统。其解给出最优点 与相应的乘子 ，在理论上保证一阶最优性。 
KKT 方法有以下不足：（1）不定性导致的不稳定：尽管协方差矩阵  为对称正定，但增广矩阵 

通常是不定矩阵。在浮点运算中，不定系统极易出现舍入误差放大，尤其当约束矩阵  的列

与  的主方向接近共线时，特征值谱中会出现极小特征值，使得系统病态（ill-conditioned）。因此，即便 
 本身条件良好，整体系统的条件数仍可能显著增大。（2）正规方程的条件数平方放大：在某些实现中，

为避免直接求解不定系统，常将 KKT 方程转化为正规方程 ，先求  再反求 。由于 
，正规方程的条件数在最坏情形下可能达到原系统的平方量级，导致数值误差进一步

放大。对于高维资产配置问题或相关性较高的协方差矩阵，这种放大效应尤为显著。（3）数值缺陷的现实

表现；在投资组合优化的背景下，这种数值病态往往表现为优化结果对输入数据的微小扰动极为敏感；解向

量出现非经济意义的极端权重；在高相关资产的情形下，KKT 系统甚至可能退化为奇异矩阵[3-5]。 
综上所述，KKT 方法虽然在理论上能够系统刻画二次优化问题的最优性条件，但在数值实现上对条件

数高度敏感，易出现不稳定与误差放大。为克服这一局限，下一章将引入正交三角分解（QR 分解）方法，

从代数结构出发对等式约束进行消元，建立一种更具几何直观性和数值稳健性的求解途径。 
3 QR 分解与约束消元 
3.1 QR 分解的定义与构造 
设 ，且其行向量线性无关（即 ）。称 的 QR 分解为： 

  （3.1） 

其中  为上三角可逆矩阵。若  的列向量不满秩，则可通过在计算中仅保留前  个线性无关的列，得

到新的列满秩矩阵 ，再作 QR 分解。 
进一步将 扩展为  的完备正交基 ，其中 

  （3.2） 

此时  分别张成矩阵 列空间与其正交补空间。 
3.2 约束空间的正交分解 
考虑等式约束系统： ，其中 .  假设  列满秩，则由式 （3.1-3.2）得： 

  （3.3） 

x∗ λ∗
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取等式两边下分块可得 ，即 。因此， 的列空间即为 的零空间（null space），任意

约束系统的可行解  均可表示为： 

  （3.4） 

其中 为任意一个特解， 为自由变量。QR 分解将解空间分解为约束满足部分与自由方向部分，在

几何上对应于 被分解为 与 的直和。值得注意的是，虽然特解 与矩阵 的具体取法并非

唯一，但它们所确定的整体解集形式（3.4）是唯一的，即约束方程的解不依赖于特定的 QR 分解实现。 
3.3 化带约束问题为无约束问题 
考虑二次优化模型 

 

其中 为对称正定矩阵. 将约束条件  可行解表示为式（3.4），代入目标函数得
 

，注意最后一项为常数。于是，原带约束优化问题转化为仅关

于  的无约束二次优化问题： 

 

该问题的最优性条件为 ，解之得： 

 

由此可见，原 n 维带约束问题等价于  维无约束二次优化问题，所有代数运算仅涉及正交矩阵与

对称正定矩阵的乘积与求逆，避免了构造不定系统。 
3.4 几何解释 
约束 定义了  中的一个  维仿射子空间，矩阵  的列向量为该子空间提供了一组正

交基，使得任意可行点 x 都可分解为“特解部分”与“自由方向”之和。目标函数 的等值集合 

是一族同心椭球面。约束 定义了一个仿射超平面。求最优解即是在该仿射超平面上寻找

与椭球面相切的点。 
QR 分解的几何作用是通过 构造正交坐标系，使约束方向与坐标轴正交化，从而将问题化为在自

由方向找到目标函数最小值。这一过程说明，正交分解不仅在代数上实现了约束的消去，也在几何上使风险

的分布方向得到清晰分离。 
3.5 数值特性与稳定性分析 
在前述代数推导中，QR 分解的核心优势不仅体现在形式简洁，更在于其数值性质。从计算结构上看，

KKT 系统与 QR 消元在变量维度和矩阵性质上存在根本区别，见表 1。 

表 1  KKT 系统和 QR 消元法对比 

方法 变量维度 系统矩阵 矩阵性质 稳定性表现 

KKT 系统   不定矩阵 对条件数敏感 

QR 消元   对称正定矩阵 数值稳定 
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在 KKT 方法中，求解需要同时引入原变量与拉格朗日乘子，使得系统矩阵呈不定形式。这种结构在理

论上统一了最优性条件，但在数值上可能引发误差放大，尤其当协方差矩阵Σ 条件数较大时。与之相比，

QR 消元通过正交分解直接在可行子空间上构造新的坐标系。由于正交矩阵不会放大误差，且 保持

对称正定性，整个计算过程可在“稳定子空间”内完成。 
在投资组合模型中，这种数值特性具有直观解释：当多个资产的收益高度相关时，协方差矩阵的条件数

会显著增大。此时，采用 KKT 系统求解往往会出现数值病态，而 QR 方法则通过在正交化坐标中重新表

达约束关系，有效降低了解空间的相关性。 
综上所述，QR 分解在带约束二次优化中的优势主要体现在三个方面：其一，代数结构清晰，可在不引

入拉格朗日乘子的情况下直接实现约束消元；其二，数值性质稳健，正交变换避免了不定矩阵导致的误差放

大；其三，几何解释直观，能够清楚揭示风险最小化问题在可行子空间中的投影结构。因此，QR 方法在理

论与应用上均为处理投资组合类二次优化问题提供了稳定而高效的途径。 
4 投资组合算例 
4.1 三资产双约束模型（投资组合模型） 
本节选取股票、债券与黄金三类资产作为研究对象。假设投资者在中等风险偏好下，希望在年化收益率 

6% 的约束条件下最小化投资组合的整体风险。我们采用收益率与协方差矩阵参考近年市场统计数据：1）
期望收益率与风险水平：股票 8%，债券 3.5%，黄金 6%；三者年化波动率依次为 20%、6%、16%。2）相

关性设定：股–债 −0.2、股–金 0.1、债–金 −0.1。 
由此可得资产的期望收益与协方差矩阵为 

 

模型目标为最小化组合风险（方差）： 

 

将约束写为 ，其中 通过 QR 分解进行等式约束的代数消元，

得到降维后的无约束问题（3.6），其中 ，解得

从而最优解为 ，组合方差 0.00869，对应标准差约 9.32%。该配置风险略高于

等权组合（方差 0.00765，对应标准差 8.75%），增加了约 6.5%，但满足收益目标，显示出模型的现实指导

意义。 
该结果符合现实投资逻辑：投资者为追求收益 6% 的目标，增加高风险资产（股票）的权重，自然面临

更大风险。该模型精确计算了风险增加的程度，具有现实可解释性。这里，QR 方法将三维空间中的两个约

束正交化，转化为一维无约束优化问题，避免了传统 KKT 方程的不定性。 
4.2 四资产双约束模型（能源结构模型） 
能源系统的结构优化亦可抽象为带约束的二次优化问题。考虑一个现实化的能源规划场景：国家希望在

保证供电稳定的前提下，降低出力波动的不确定性，同时设定一定比例的清洁能源配额。 
设四种主要能源为：（1）煤电；（2）水电；（3）风能和光能；（4）天燃气。其出力波动标准差与相

关系数为 
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协方差矩阵为 。注意；虽然包含弱负相关项（体现水电与风光的互补），但整体为

正定矩阵，最优解存在且唯一。 
优化模型为： 

 

其中 ，即“水电+风光”占 45%。 
计算结果如表 2： 

表 2  单约束与双约束模型比较 

情形 约束条件 最优权重  出力波动标准差  

I 仅预算约束  7.02 % 

II 预算 + 环保配额 45 %  8.21 % 

 
结果分析：无环保约束时，系统倾向于配置低波动的天然气与煤电；而加入“45% 可再生能源”约束

后，燃气比重下降、水电上升，整体波动率上升。该结果定量体现了系统风险与结构性约束的权衡：可再生

占比提升虽改善环保目标，却增加了出力的不确定性。几何上，QR 消元通过约束正交化，将优化限制在二

维可行平面内求最优，避免了传统方法中因多约束带来的不定性问题。 
4.3 条件数与稳定性分析 
4.3.1 条件数的定义和意义 
在数值线性代数中，条件数（condition number）用于衡量一个线性系统对输入扰动的敏感程度。设矩阵 

M 可逆，其条件数定义为： 

 

其中 与 分别是 M 的最大与最小奇异值。 

几何上，奇异值描述了矩阵对单位球的“拉伸”作用：单位球经线性变换 M 后成为一个椭球体，其主

轴长度正是各奇异值。因此， 表示矩阵对向量长度的最大放大倍数， 表示最小放大倍数。若二者相

差悬殊（即椭球极度扁平），则系统对输入方向的扰动极其敏感，容易产生数值不稳定。 
换言之，条件数越大，系统越病态，计算结果越容易受舍入误差放大影响。 
4.3.2 稳定性分析 
对于第 4.1 节的投资组合模型：  这里 QR 降维后的矩阵 是标量，条

件数为 1，比 KKT 系统的条件数明显地低，说明正交化显著改善了数值稳定性。这对金融优化尤为重要，

因为收益协方差矩阵往往呈高相关性（接近病态），传统 KKT 方法易受舍入误差影响。 
对于第 4.2 节的能源结构模型：  两种方法条件数相差约 22 倍，表明在高

相关、双约束的情形下，QR 方法依然保持低条件数，而 KKT 系统因不定结构导致误差放大显著。 
由此可见，即使在低维（三、四资产）情况下，QR 方法的条件数也较 KKT 系统至少降低一个数量级，
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充分验证了 QR 分解在等式约束二次优化中的稳定性与计算可靠性。这根本原因在于：QR 方法通过正交化

操作将约束空间转化为自由子空间，避免构造不定的增广矩阵，从而有效抑制病态特征值带来的数值放大。 
在更高维的情形中，若资产间高度相关或约束数量接近变量数，KKT 系统的不定结构会导致最小奇异

值显著减小，从而放大舍入误差，其条件数往往可达 级别[3,9-10]。相对地，QR 降维后的子系统仅包

含正定块，避免了正规方程的平方放大效应[8]，其条件数通常维持在 范围内。因此，从数值稳定性

的角度看，QR 分解提供了一种稳定且可解释的约束消元途径，在高相关、多约束的情形下表现出显著优势。 
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