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A review of retrieval enhancement generation (RAG) empowering medical artificial intelligence

Xun Liv*, Shumin Liu

School of Software Engineering, Jiangxi University of Science and Technology, Nanchang, Jiangxi

[ Abstract] This paper focuses on the core value and development context of Retrieval-Augmented Generation
(RAG) technology in the field of medical artificial intelligence. It systematically analyzes its technical evolution, core
architecture design, and multi-scenario application practices, constructs a multi-dimensional evaluation system, and deeply
explores the current challenges and future optimization directions. By integrating and analyzing RAG's application cases
in clinical decision support, medical research and education, and patient health management, this study verifies the
significant effectiveness of the technology in alleviating key problems of Large Language Models (LLMs) such as
knowledge latency, hallucination generation, and poor explainability. Through dynamically retrieving external authoritative
knowledge bases, RAG greatly improves the factual accuracy, traceability, and clinical reliability of medical content
generation. The research shows that RAG technology is a core path to promote the trustworthy deployment of medical
artificial intelligence, but continuous breakthroughs are still needed in aspects such as multimodal information fusion,
medical data privacy protection, dynamic knowledge base update, and computational cost optimization. This paper
provides theoretical support and practical reference for the safe application of RAG technology in high-risk medical
scenarios, and helps the high-quality construction of the intelligent healthcare ecosystem.
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