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A review of fog image generation algorithms based on deep learning

Junjun Yang", Shumin Liu
School of Software Engineering, Jiangxi University of Science and Technology, Nanchang, Jiangxi

[ Abstract] Fogimage generation technology aims to synthesize clear images into images with realistic foggy visual
effects and is an important research direction in the field of computer vision. This technology is not only a key means to
enhance the training effectiveness of image dehazing models and improve the robustness of visual systems in complex
environments, but also demonstrates broad application value in practical scenarios such as autonomous driving simulation
tests, film special effects production, and digital art creation. Traditional fog image generation methods rely heavily on
parameter estimation of atmospheric scattering models. Due to the simplification of the models and the subjectivity in
parameter design, both the realism and scene adaptability of the generated fog images are significantly limited. In recent
years, the rapid development of deep learning technology, especially the breakthrough applications of generative
adversarial networks and diffusion models, has injected new momentum into fog image generation technology. This paper
systematically reviews the research progress of deep learning-based fog image generation algorithms, categorizing them
into three major types: physics model-guided, end-to-end generation, and diffusion model-driven. It provides an in-depth
analysis of the core principles, technical advantages, and applicable limitations of each type. Finally, in combination with
the current research status, the paper summarizes the key challenges in this field and, from the perspectives of technology
integration, functional expansion, and performance optimization, explores future research directions, providing a reference
for subsequent related studies.

[ Keywords] Foggy image generation; Deep learning; Generative adversarial networks; Diffusion models
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