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基于深度学习的雾图生成算法综述 
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【摘要】雾图生成技术旨在将清晰图像合成为具有真实雾霾视觉效果的图像，是计算机视觉领域的重要研究

方向。该技术不仅是增强图像去雾模型训练效果、提升视觉系统在复杂环境下鲁棒性的关键技术手段，还在自动

驾驶仿真测试、影视特效制作、数字艺术创作等实际场景中展现出广泛应用价值。传统雾图生成方法高度依赖大

气散射模型的参数估计，受限于模型简化性与参数设计主观性，生成雾图的真实感与场景适应性均存在明显不足。

近年来，深度学习技术的快速发展，尤其是生成对抗网络与扩散模型的突破性应用，为雾图生成技术注入了新的

发展动力。本文系统梳理了基于深度学习的雾图生成算法研究进展，将其划分为物理模型引导型、端到端生成型

与扩散模型驱动型三大类别，深入剖析各类方法的核心原理、技术优势及适用局限。最后，结合当前研究现状，

总结该领域面临的关键挑战，并从技术融合、功能拓展、性能优化等角度展望未来研究方向，为后续相关研究提

供参考。 
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A review of fog image generation algorithms based on deep learning 
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【Abstract】Fog image generation technology aims to synthesize clear images into images with realistic foggy visual 
effects and is an important research direction in the field of computer vision. This technology is not only a key means to 
enhance the training effectiveness of image dehazing models and improve the robustness of visual systems in complex 
environments, but also demonstrates broad application value in practical scenarios such as autonomous driving simulation 
tests, film special effects production, and digital art creation. Traditional fog image generation methods rely heavily on 
parameter estimation of atmospheric scattering models. Due to the simplification of the models and the subjectivity in 
parameter design, both the realism and scene adaptability of the generated fog images are significantly limited. In recent 
years, the rapid development of deep learning technology, especially the breakthrough applications of generative 
adversarial networks and diffusion models, has injected new momentum into fog image generation technology. This paper 
systematically reviews the research progress of deep learning-based fog image generation algorithms, categorizing them 
into three major types: physics model-guided, end-to-end generation, and diffusion model-driven. It provides an in-depth 
analysis of the core principles, technical advantages, and applicable limitations of each type. Finally, in combination with 
the current research status, the paper summarizes the key challenges in this field and, from the perspectives of technology 
integration, functional expansion, and performance optimization, explores future research directions, providing a reference 
for subsequent related studies. 
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引言 
随着计算机视觉技术在智能驾驶、安防监控、遥

感探测等领域的深度应用，恶劣天气对视觉系统性能

的影响愈发凸显。其中，雾霾天气会导致图像出现显著
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质量退化，具体表现为：图像对比度大幅降低、色彩信

息失真偏移、场景细节与边缘特征被模糊掩盖。这种退

化不仅影响人类视觉感知，更会严重干扰目标检测、语

义分割、路径规划等计算机视觉算法的精度，甚至引发

智能驾驶碰撞、安防监控漏检等安全事故。 
为解决恶劣天气下视觉系统的鲁棒性问题，学术

界与工业界形成了两大研究方向：图像去雾与雾图生

成。图像去雾致力于从退化雾图中复原清晰场景，而雾

图生成则相反，旨在为清晰图像添加真实感雾霾效果。

早期，雾图生成的核心用途是为图像去雾算法提供“清

晰-雾图”配对数据集，以实现去雾模型的有监督训练

与性能公平对比。但随着技术发展，雾图生成的应用场

景已远超这一范畴，例如在自动驾驶仿真中构建雾天

测试环境、在影视制作中生成逼真雾效场景、在数字艺

术中创作雾天视觉作品等。 
传统雾图生成方法以大气散射物理模型为核心，

其本质是通过估计模型中的关键参数（如透射率、大气

光值）实现雾效合成。这类方法通常依赖简单图像滤波

技术（如暗通道先验滤波）或额外深度传感器数据（如

激光雷达深度图）来估计参数，但存在三大局限性：一

是物理模型是对真实雾霾形成过程的简化，无法覆盖

复杂自然场景（如非均匀雾、混合尘雾）的雾效特征；

二是手工设计的参数估计算法泛化能力弱，在复杂场

景（如密集建筑、茂密植被）中易出现参数偏差，导致

生成雾图均匀化、不自然；三是部分非物理渲染方法

（如直接模糊叠加）虽能产生朦胧视觉效果，但因违背

雾霾形成的物理规律，无法用于去雾算法训练等严肃

学术研究。 
深度学习技术的崛起为雾图生成提供了新的解决

方案。其中，生成对抗网络（GAN）[1]、变分自编码器

（VAE）等生成模型，以及近年来引发技术变革的扩散

模型[2]，凭借数据驱动的优势，能够从海量真实雾图数

据中学习雾霾的分布特征与形成规律，生成更逼真、更

多样的雾图。基于此，本文系统梳理基于深度学习的雾

图生成算法[3]，按技术路线进行分类剖析，总结当前研

究挑战，并展望未来发展方向，以期为该领域的后续研

究提供清晰的技术脉络。 
1 基于深度学习的雾图生成算法分类与进展 
基于深度学习的雾图生成算法根据技术核心与实

现逻辑，可分为三大类别：物理模型引导型方法、端到

端生成型方法、扩散模型驱动型方法。以下分别对各类

方法的核心原理、典型案例与技术特点进行详细阐述。 
1.1 物理模型引导型方法 

1.1.1 核心原理 
物理模型引导型方法的核心思路是：融合深度学

习的参数估计能力与物理模型的可解释性，通过深度

学习网络估计大气散射模型中的关键参数，再将参数

代入物理模型完成雾图合成。该类方法的本质是 “数

据驱动估计参数+物理规律约束合成”，既保证生成过

程的物理合理性，又提升参数估计的精度与泛化能力。 
大气散射模型[4]的经典表达式为： 

𝐼𝐼(𝑥𝑥)  =  𝐽𝐽(𝑥𝑥)  ⋅  𝑡𝑡(𝑥𝑥)  +  𝐴𝐴 ⋅  �1 − 𝑡𝑡(𝑥𝑥)� 

其中，I（x） 为观察到的有雾图像，J（x）为需要

恢复的无雾清晰图像，t（x）为在位置 x 处的透射率，

A 为全局大气光值，通常假设为一个常数。图像去雾

的任务就是从已知的 I（x）中，估算出 A 和 t（x），

从而求解出清晰的图像 J（x）。 
1.1.2 典型案例与技术特点 
以 DehazeNet[5]为代表的去雾网络，其参数估计方

法在雾图生成任务中得到了广泛应用。DehazeNet 基
于卷积神经网络，学习从有雾图像到透射率 t（x）的

映射关系。若逆向运用该思路，将清晰图像 J（x）与

对应的深度图（场景深度越大，透射率 t（x）越小）

输入网络，即可估计出符合真实场景深度的透射率 t
（x），进而将其代入大气散射模型，合成具有合理雾

效的图像。 
该类方法的优势在于其生成过程具有高度可控性，

可通过调整深度图或大气光值精准调控雾的浓度与空

间分布；同时严格遵循大气散射物理规律，生成的雾图

具有可靠的物理一致性，可直接用于去雾模型训练；此

外，基于明确物理模型的生成逻辑使其具备良好的可

解释性，便于分析参数对雾效的影响。然而，这类方法

也存在明显局限：生成质量高度依赖参数估计精度，深

度图不准确会导致透射率偏差和局部失真；受限于物

理模型的简化假设，难以生成非均匀雾、动态雾等复杂

雾效；且往往需要深度图等额外信息，增加了数据获取

成本和应用门槛。 
1.2 端到端生成型方法 
1.2.1 核心原理 
端到端生成型方法摒弃了显式的物理模型，直接

通过深度学习模型（以 GAN 为主）学习 “清晰图像

→雾图” 的映射关系。其核心逻辑是：利用生成器

（ Generator ）直接输出雾图，同时通过判别器

（Discriminator）与生成器的对抗训练，迫使生成雾图

的分布与真实雾图分布一致，如图 1 所示。 
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图 1  对抗训练图 

 
最终实现 “输入清晰图，输出真实雾图” 的端

到端映射。该类方法的技术核心是 GAN[6]的对抗训练

机制： 
（1）生成器 G：通常采用 U-Net 等编码器 - 解

码器结构，输入清晰图像，输出对应的雾图 G（z）； 
（2）判别器 D：采用 PatchGAN 等结构，输入图

像（真实雾图或生成雾图），输出该图像为“真实雾图” 
的概率； 

（3）训练目标：通过最小化生成器损失（使生成

雾图 “骗过” 判别器）与最大化判别器损失（使判别

器准确区分真实 / 生成雾图），最终达到纳什均衡，

此时生成雾图与真实雾图在视觉与分布上高度一致。 
1.2.2 技术演进与典型框架 
端到端生成型方法的研究主要围绕两大方向展开：

解决数据配对难题与提升生成可控性，形成了以下典

型技术框架： 
（1）无监督生成：解决数据配对难题 
由于获取大规模“清晰-雾图”配对数据（同一场

景在晴天与雾天的图像）难度极大，无监督学习成为该

领域的关键突破方向。其中，CycleGAN[7]是代表性框

架，其核心创新是引入循环一致性损失，实现无配对数

据下的域转换（清晰图像域→雾图域）。 
CycleGAN [8]的工作流程为： 
（1）构建两个生成器 G_{c→f}（清晰图→雾图）

与 G_{f→c}（雾图→清晰图），以及两个判别器 D_f
（判别雾图）与 D_c（判别清晰图）； 

（2）引入循环一致性损失：要求清晰图像 J 经 
G_{c→f} 生成雾图 G_{c→f}（J） 后，再经 G_{f→c} 
还原为清晰图 G_{f→c}（G_{c→f}（J）），且还原图

需与原始图 J 高度相似； 
（3）通过对抗损失（使生成雾图符合真实雾图分

布）与循环一致性损失（保证场景内容不丢失）的联合

优化，实现无配对数据下的雾图生成。 
该框架的优势在于无需配对数据，仅需分别收集

清晰图像集与真实雾图集即可训练，大幅降低了数据

获取成本。 
（2）条件生成：提升生成可控性 
为实现对雾效浓度、分布的精准控制，条件生成对

抗网络（cGAN）[9]被广泛应用，其核心是向生成器与

判别器输入额外条件信息（如雾浓度标签、深度图），

引导生成过程。其中，Pix2Pix[10]是代表性框架，其技

术特点包括： 
（1）生成器采用 U-Net 结构：通过跳跃连接保留

清晰图像的细节信息，避免生成雾图出现场景内容失

真； 
（2）判别器采用 PatchGAN 结构：通过判断图像

局部 patches 是否为真实雾图，提升生成雾图的细节

真实度； 
（3）损失函数设计：引入 L1 损失（使生成雾图与

真实雾图在像素级上相似）与对抗损失（使生成雾图符

合真实分布），平衡生成雾图的像素精度与视觉真实感。 
Pix2Pix [11]适用于有配对数据的场景，可通过输入

不同条件信息（如不同深度图），生成不同雾效分布的

雾图，提升了生成过程的可控性。 
1.2.3 典型训练流程 
尽管在具体实现上各有侧重，但这些图像生成框

架通常遵循一套共通的训练流程。端到端 GAN[12]方法

的训练流程通常包括三个阶段，具体如下： 
（1）数据准备与预处理： 
收集数据集：包括清晰图像集（如 Cityscapes、

COCO 数据集的晴天图像）与真实雾图集（如 Foggy 
Cityscapes、RealFog 数据集）； 

G
生成器

D
判别器

真/假

生成图像
G(z)

真实图像
x
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数据预处理：对图像进行缩放、归一化、数据增强

等操作，形成训练集。 
（2）网络构建阶段： 
生成器设计：采用 U-Net 或改进型 U-Net（如加

入注意力机制）作为生成器，通过编码器提取清晰图像

的特征，解码器根据特征生成雾图； 
判别器设计：采用  PatchGAN 或  Multi-Scale 

PatchGAN 作为判别器，通过多尺度特征判断输入图

像是否为真实雾图，提升判别精度。 
（3）配置损失函数与优化器： 
损失函数：最经典的是二元交叉熵损失； 
优化器：通常采用自适应优化器，如 Adam ，交

替更新生成器与判别器参数，需要为生成器和判断器

分别创建独立的优化器，直至损失函数收敛，生成雾图

达到真实感要求。 
1.2.4 技术优势与局限 
基于 GAN 的雾图生成方法具有显著优势，其通过

对抗训练能够学习真实雾图的分布特征，生成细节丰

富且具有自然非均匀特性的雾效；该方法不依赖物理

模型，对复杂场景展现出良好的适应性；同时无监督训

练范式降低了对配对数据的依赖，提升了实用价值。然

而该方法也存在明显局限：训练过程不稳定，易出现模

式崩溃和梯度消失问题[13]；在雾效控制方面精度不足，

条件生成虽能改善但需额外信息支持；更重要的是物

理一致性难以保证，生成结果常出现雾浓度与场景深

度不匹配的问题，限制了在去雾模型训练等要求严格

的应用中的使用价值。 
1.3 扩散模型驱动型方法 
1.3.1 核心原理 
扩散模型（Diffusion Model）[14]与 GAN 的 “一

步生成” 逻辑不同，其核心是通过前向扩散与反向去

噪的马尔可夫链过程，实现从随机噪声到目标雾图的

渐进式生成。该类方法的本质是 “学习噪声分布→逐

步去噪生成”，通过多步迭代提升生成雾图的真实感

与细节丰富度。 
扩散模型的工作过程分为两个阶段： 
前向扩散阶段：对真实雾图 I 逐步添加少量高斯

噪声，经过足够多的步骤 T 后，图像最终会变成一个

高斯噪声𝑋𝑋𝑇𝑇。完全退化为随机噪声 x_T； 
反向去噪阶段：是扩散模型的生成部分，学习从含

噪图像 x_t 中预测噪声，并通过公式逐步去噪，最终

从 x_T 恢复为清晰图像𝑥𝑥0，如图 2 所示。 

 

图 2  反向去噪图 

 
为实现雾图生成的条件控制，扩散模型通常将条

件信息嵌入到去噪网络的每一层，使模型在每一步去

噪过程中都能根据条件信息调整生成方向。 
1.3.2 典型应用范式 
扩散模型在雾图生成领域的应用主要分为两种范

式： 
（1）专用扩散模型训练 
针对雾图生成任务，设计专用的扩散模型结构与

训练策略[15]。例如，在去噪网络中加入深度感知模块，

将场景深度图作为条件信息，引导模型生成符合深度

的雾效（近景雾淡、远景雾浓）；或在损失函数中加入

物理约束项（如透射率一致性损失），提升生成雾图的

物理合理性。 
这类方法的优势是模型针对性强，生成雾图与任

务需求高度匹配；但局限是需要大规模雾图数据集训

练，且训练周期长（通常需数天至数周）。 
（2）基于预训练扩散模型的微调 

利用 Stable Diffusion [16]等大型预训练扩散模型，

通过参数高效微调技术（如 LoRA、Adapter）适配雾

图生成任务。这类预训练模型已在数十亿“图像 - 文
本”对上学习了丰富的视觉特征与生成规律，具备强大

的通用生成能力。微调过程中，仅训练少量模型参数

（如 LoRA 的低秩矩阵参数[17]），即可使模型快速适

应“清晰图→雾图”的生成任务，同时保留预训练模

型的细节生成能力。 
这类方法的优势在于显著降低了数据依赖与训练

成本。通过利用预训练视觉-语言模型所蕴含的丰富视

觉先验，仅需少量雾图样本进行微调即可实现高质量

生成，大幅缩短了训练周期至数小时级别。同时，基于

大模型的强大生成能力，该方法能够产生风格多样的

雾效表现，从薄雾到浓雾等不同类型皆可自然呈现，有

效满足了不同场景的应用需求。 
1.3.3 技术优势与局限 
生成雾图质量高：基于扩散模型的雾图生成方法

纯高斯噪声
x_T

去噪一步
(t=T)

得到清晰的
x_{T-1}

去噪一步
(t=T-1)

...
去噪一步
(t=T)

清晰图像
x=0
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展现出显著优势：通过多步渐进式去噪过程，能够生成

细节丰富、视觉逼真的雾效，尤其在复杂场景中表现稳

定；其训练过程避免了 GAN 常见的模式崩溃问题，具

有更好的收敛性和可复现性；同时支持多模态条件输

入，可通过文本、深度等信息灵活控制雾效风格。然而，

该方法仍面临生成效率低下的瓶颈，单图生成需数百

毫秒至数秒，难以满足实时需求；训练与推理过程计算

成本高昂，对硬件要求严苛；且在物理一致性方面仍需

加强，特别是在处理透明物体和动态雾效时仍可能出

现违背物理规律的情况。 
2 基于深度学习的雾图生成算法关键挑战 
尽管基于深度学习的雾图生成技术已取得显著进

展，但在实际应用与技术深化过程中，仍面临四大关键

挑战，制约着技术的进一步落地与发展。 
2.1 生成雾图的物理一致性与真实感平衡难题 
当前雾图生成技术面临核心矛盾：物理模型方法

能保证雾效符合大气散射规律，但视觉保真度不足；而

数据驱动方法（如 GAN 与扩散模型）虽能生成细节丰

富的图像，却常出现物理逻辑失真[18]，如雾浓度与场

景深度不匹配、雾效与光照条件不协调等问题。这一困

境的根源在于，现有方法未能有效统一物理过程的严

谨性与场景特征的复杂性——要么过度依赖简化模型

而忽略场景动态影响，要么仅学习视觉表象而缺乏对

物理机理的深入建模。 
2.2 复杂场景与动态雾效的生成能力不足 
现有雾图生成算法在复杂场景适应性和动态雾效

生成方面[19]仍存在显著不足。面对复杂场景时，模型

常出现雾效断裂、穿透及光照失真等问题，难以准确处

理透明物体与密集遮挡下的雾效分布。同时，现有方法

缺乏对时空维度的有效建模，无法生成符合自然规律

的动态雾效序列，难以满足自动驾驶仿真、影视制作等

应用对雾效流动特征的实时生成需求。 
2.3 数据依赖与泛化能力的矛盾 
雾图生成算法面临数据依赖与泛化能力的双重挑

战。高质量配对数据（清晰-雾图）的获取极为困难，

需保证拍摄参数完全一致，导致现有数据集规模有限、

场景单一。同时，真实雾图因颗粒物成分差异呈现不同

视觉特征（如沙尘雾偏黄、水汽雾偏白），而现有数据

集多覆盖单一雾型，限制了模型的跨类型泛化能力。此

外，算法域适应能力普遍不足，当测试场景或雾型与训

练数据存在差异时（如城市模型用于乡村场景），易出

现雾效特征迁移不当的问题，难以准确建模不同环境

下的散射差异。 

2.4 生成效率与实时性需求的差距 
生成效率是制约雾图生成技术实际应用的关键瓶

颈。扩散模型[20]因需数百至数千次迭代，单图生成耗

时远超实时应用的毫秒级要求；GAN[21]方法虽能实现

较快生成，但为提升质量而采用的复杂网络结构导致

参数量激增，在计算资源受限的嵌入式设备上难以有

效部署；而物理模型引导型方法则受限于其参数估计

过程的计算开销，随着场景复杂度的提升，其效率优势

也显著减弱。当前各类方法均难以在保持生成质量的

同时满足自动驾驶仿真等场景的低延迟需求。 
3 基于深度学习的雾图生成算法未来展望 
针对当前研究面临的挑战，结合计算机视觉技术的

发展趋势，从技术融合、功能拓展、性能优化三个维度，

展望基于深度学习的雾图生成算法的未来研究方向。 
3.1 技术融合：物理模型与数据驱动的深度耦合 
未来研究应致力于打破物理模型与数据驱动方法

间的技术壁垒，推动二者的深度融合，以实现生成雾图

在物理一致性与视觉真实感上的有效平衡。具体路径

包括：在数据驱动框架中嵌入物理约束，如在 GAN 或

扩散模型的损失函数中引入透射率一致性损失，或在

其生成器中设计物理先验模块，使模型在特征学习过

程中自然遵循大气散射规律；同时，可利用神经网络优

化传统物理模型中的简化假设，例如学习动态变化的

大气光值或非均匀雾的散射系数分布，从而构建更贴

合真实世界复杂性的动态物理模型，增强对多样雾效

的建模能力。 
3.2 功能拓展：从静态雾图到动态、多模态雾效生

成 
未来雾图生成技术需从静态单模态向动态多模态

方向拓展，以满足复杂场景的应用需求。一方面，应引

入时空建模技术，通过视频扩散模型等架构实现从静

态图像到动态雾图序列的生成，并利用帧间一致性损

失确保雾效随时间变化的连续性；另一方面，需融合文

本、语音等多模态信息，借助跨模态模型实现基于语义

描述的定制化雾效生成，同时支持通过交互指令实时

调整雾效参数，增强技术的实用性与灵活性。 
3.3 性能优化：效率提升与泛化能力增强 
针对雾图生成算法在效率与泛化方面的瓶颈，未

来研究需从网络结构与训练策略两方面推进优化。在

效率提升上，可通过模型压缩、迭代步数优化及知识蒸

馏等技术显著加速扩散模型推理过程，同时设计轻量

级网络架构以降低参数量与计算开销，使其更适合嵌

入式设备部署。在泛化能力增强方面，应引入域自适应
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学习方法提升模型跨场景适应性，并发展小样本与零样

本生成技术，通过预训练模型微调与雾效属性迁移，实

现在有限数据条件下对不同场景与雾型的高质量生成。 
4 结论 
本文系统梳理了基于深度学习的雾图生成算法研

究进展，将其划分为物理模型引导型、端到端生成型与

扩散模型驱动型三大类别，并从核心原理、典型案例、

技术优劣势三个维度进行了深入剖析。通过分析当前

研究现状，总结出该领域面临的四大关键挑战：物理一

致性与真实感平衡难题、复杂场景与动态雾效生成能

力不足、数据依赖与泛化能力矛盾、生成效率与实时性

差距。 
针对上述挑战，从技术融合、功能拓展、性能优化

三个方向展望了未来研究方向：通过物理模型与数据

驱动的深度耦合，平衡生成雾图的物理合理性与视觉

真实感；通过动态、多模态雾效生成技术，拓展算法的

应用场景；通过效率优化与泛化能力增强，提升算法的

实用性与部署能力。 
随着计算机视觉技术的不断发展，尤其是大模型、

多模态学习等技术的突破，基于深度学习的雾图生成

算法将在物理建模精度、生成质量、应用范围上实现进

一步突破，为图像去雾、自动驾驶仿真、影视特效等领

域提供更强大的技术支撑，推动相关产业的快速发展。 
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